1,342 research outputs found

    Omnidirectional Sensory and Motor Volumes in Electric Fish

    Get PDF
    Active sensing organisms, such as bats, dolphins, and weakly electric fish, generate a 3-D space for active sensation by emitting self-generated energy into the environment. For a weakly electric fish, we demonstrate that the electrosensory space for prey detection has an unusual, omnidirectional shape. We compare this sensory volume with the animal's motor volume—the volume swept out by the body over selected time intervals and over the time it takes to come to a stop from typical hunting velocities. We find that the motor volume has a similar omnidirectional shape, which can be attributed to the fish's backward-swimming capabilities and body dynamics. We assessed the electrosensory space for prey detection by analyzing simulated changes in spiking activity of primary electrosensory afferents during empirically measured and synthetic prey capture trials. The animal's motor volume was reconstructed from video recordings of body motion during prey capture behavior. Our results suggest that in weakly electric fish, there is a close connection between the shape of the sensory and motor volumes. We consider three general spatial relationships between 3-D sensory and motor volumes in active and passive-sensing animals, and we examine hypotheses about these relationships in the context of the volumes we quantify for weakly electric fish. We propose that the ratio of the sensory volume to the motor volume provides insight into behavioral control strategies across all animals

    The importance of seasonal temperature and moisture patterns on growth of Douglas-fir in western Oregon, USA

    Get PDF
    AbstractDouglas-fir growth in the Pacific Northwest is thought to be water limited. However, discerning the relative influence of air temperature and plant available soil water (W) on growth is difficult because they interact with each other, with other climate factors and with the inherent seasonal timing of cambial activity. Douglas-fir growth response to air temperature and W patterns during the growing season was examined using time series regression analysis of dendrometer data collected at approximately four-week intervals from 1998 through 2009. Five study sites were located in mature forest stands along an elevation gradient from the Pacific coast to the west slope of the Cascade Mountains (∼1200m) in Oregon, USA. Maximum daily air temperature (T) and W were similar in relative importance to tree growth at four of the five sites. W was substantially more important at one site. Growth rate increased with T to an optimum (Topt) and decreased with higher T. At the two drier sites T and W affected growth interactively in that Topt decreased with decreasing W. We conclude that both T and W affect growth and that T consistently limits growth at three of the five sites and at all sites in years with above average summer temperature. Should climate change result in hotter summers in the region as predicted by climate models, we suggest that Douglas-fir will experience progressive temperature limitation

    On a nonstandard two-parametric quantum algebra and its connections with Up,q(gl(2))U_{p,q}(gl(2)) and Up,q(gl(11))U_{p,q}(gl(1|1))

    Get PDF
    A quantum algebra Up,q(ζ,H,X±)U_{p,q}(\zeta ,H,X_\pm ) associated with a nonstandard RR-matrix with two deformation parameters(p,q)(p,q) is studied and, in particular, its universal R{\cal R}-matrix is derived using Reshetikhin's method. Explicit construction of the (p,q)(p,q)-dependent nonstandard RR-matrix is obtained through a coloured generalized boson realization of the universal R{\cal R}-matrix of the standard Up,q(gl(2))U_{p,q}(gl(2)) corresponding to a nongeneric case. General finite dimensional coloured representation of the universal R{\cal R}-matrix of Up,q(gl(2))U_{p,q}(gl(2)) is also derived. This representation, in nongeneric cases, becomes a source for various (p,q)(p,q)-dependent nonstandard RR-matrices. Superization of Up,q(ζ,H,X±)U_{p,q}(\zeta , H,X_\pm ) leads to the super-Hopf algebra Up,q(gl(11))U_{p,q}(gl(1|1)). A contraction procedure then yields a (p,q)(p,q)-deformed super-Heisenberg algebra Up,q(sh(1))U_{p,q}(sh(1)) and its universal R{\cal R}-matrix.Comment: 17pages, LaTeX, Preprint No. imsc-94/43 Revised version: A note added at the end of the paper correcting and clarifying the bibliograph

    Effects of a large-scale, natural sediment deposition event on plant cover in a Massachusetts salt marsh

    Get PDF
    In mid-winter 2018, an unprecedented sediment deposition event occurred throughout portions of the Great Marsh in Massachusetts. Evaluation of this event in distinct marsh areas spanning three towns (Essex, Ipswich, and Newbury) revealed deposition covering 29.2 hectares with an average thickness of 30.1±2.1 mm measured shortly after deposition. While sediment deposition helps marshes survive sea level rise by building elevation, effects of such a large-scale deposition on New England marshes are unknown. This natural event provided an opportunity to study effects of large-scale sediment addition on plant cover and soil chemistry, with implications for marsh resilience. Sediment thickness did not differ significantly between winter and summer, indicating sediment is not eroding or compacting. The deposited sediment at each site had similar characteristics to that of the adjacent mudflat (e.g., texture, bivalve shells), suggesting that deposited materials resulted from ice rafting from adjacent flats, a natural phenomenon noted by other authors. Vegetative cover was significantly lower in plots with rafted sediment (75.6±2.3%) than sediment-free controls (93.1±1.6%) after one growing season. When sorted by sediment thickness categories, the low thickness level (1–19 mm) had significantly greater percent cover than medium (20–39 mm) and high (40–90 mm) categories. Given that sediment accretion in the Great Marsh was found to average 2.7 mm per year, the sediment thickness documented herein represents ~11 years of sediment accretion with only a 25% reduction in plant cover, suggesting this natural sediment event will likely increase long-term marsh resilience to sea level rise

    Forage sorghum, 1981

    Get PDF
    "February 1982.""The Author: Harry C. Minor is an Associate Professor of Agronomy and State Extension Specialist, Carl G. Morris is a Senior Research Specialist, Richard E. Mattis is an Instructor of Agronomy and Assistant Superintendent, Bruce A. Burdick and Howard L. Mason are Research Specialists.

    Generation of coherent terahertz pulses in Ruby at room temperature

    Get PDF
    We have shown that a coherently driven solid state medium can potentially produce strong controllable short pulses of THz radiation. The high efficiency of the technique is based on excitation of maximal THz coherence by applying resonant optical pulses to the medium. The excited coherence in the medium is connected to macroscopic polarization coupled to THz radiation. We have performed detailed simulations by solving the coupled density matrix and Maxwell equations. By using a simple VV-type energy scheme for ruby, we have demonstrated that the energy of generated THz pulses ranges from hundreds of pico-Joules to nano-Joules at room temperature and micro-Joules at liquid helium temperature, with pulse durations from picoseconds to tens of nanoseconds. We have also suggested a coherent ruby source that lases on two optical wavelengths and simultaneously generates THz radiation. We discussed also possibilities of extension of the technique to different solid-state materials

    In Silico Modeling of the Rheological Properties of Covalently Cross-Linked Collagen Triple Helices

    Get PDF
    Biomimetic hydrogels based on natural polymers are a promising class of biomaterial, mimicking the natural extra-cellular matrix of biological tissues and providing cues for cell attachment, proliferation, and differentiation. With a view to providing an upstream method to guide subsequent experimental design, the aim of this study was to introduce a mathematical model that described the rheological properties of a hydrogel system based on covalently cross-linked collagen triple helices. In light of their organization, such gels exhibit limited collagen bundling that cannot be described by existing fibril network models. The model presented here treats collagen triple helices as discrete semiflexible polymers, permits full access to metrics for network microstructure, and should provide a comprehensive understanding of the parameter space associated with the development of such multifunctional materials. Triple helical hydrogel networks were experimentally obtained via the reaction of type I collagen with both aromatic and aliphatic diacids. The complex modulus G* was found from rheological testing in linear shear and quantitatively compared to model predictions. In silico data from the computational model successfully described the experimental trends in hydrogel storage modulus with either (i) the concentration of collagen triple helices during the cross-linking reaction or (ii) the type of cross-linking segment introduced in resulting hydrogel networks. This approach may pave the way to a step change in the rational design of biomimetic triple helical collagen systems with controlled multifunctionality

    Recording advances for neural prosthetics

    Get PDF
    An important challenge for neural prosthetics research is to record from populations of neurons over long periods of time, ideally for the lifetime of the patient. Two new advances toward this goal are described, the use of local field potentials (LFPs) and autonomously positioned recording electrodes. LFPs are the composite extracellular potential field from several hundreds of neurons around the electrode tip. LFP recordings can be maintained for longer periods of time than single cell recordings. We find that similar information can be decoded from LFP and spike recordings, with better performance for state decodes with LFPs and, depending on the area, equivalent or slightly less than equivalent performance for signaling the direction of planned movements. Movable electrodes in microdrives can be adjusted in the tissue to optimize recordings, but their movements must be automated to be a practical benefit to patients. We have developed automation algorithms and a meso-scale autonomous electrode testbed, and demonstrated that this system can autonomously isolate and maintain the recorded signal quality of single cells in the cortex of awake, behaving monkeys. These two advances show promise for developing very long term recording for neural prosthetic applications
    corecore