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a  b  s  t  r  a  c  t

Douglas-fir  growth  in  the  Pacific  Northwest  is  thought  to  be water  limited.  However,  discerning  the
relative  influence  of  air  temperature  and  plant  available  soil  water  (W)  on  growth  is difficult  because
they  interact  with  each  other,  with  other  climate  factors  and  with  the  inherent  seasonal  timing  of  cambial
activity.  Douglas-fir  growth  response  to air  temperature  and  W  patterns  during  the  growing  season  was
examined  using  time  series  regression  analysis  of dendrometer  data  collected  at  approximately  four-
week  intervals  from  1998  through  2009.  Five  study  sites  were  located  in  mature  forest  stands  along
an  elevation  gradient  from  the  Pacific  coast  to the  west  slope  of  the  Cascade  Mountains  (∼1200  m) in
Oregon,  USA.  Maximum  daily  air temperature  (T)  and  W were  similar  in relative  importance  to  tree
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growth  at  four  of  the  five  sites.  W  was  substantially  more  important  at one  site.  Growth  rate  increased
with  T to an  optimum  (Topt) and  decreased  with  higher  T.  At the  two  drier  sites  T and  W  affected  growth
interactively  in  that  Topt decreased  with  decreasing  W.  We  conclude  that  both  T  and  W  affect  growth  and
that  T consistently  limits  growth  at three  of the  five  sites  and  at all  sites  in  years  with  above  average
summer  temperature.  Should  climate  change  result  in  hotter  summers  in  the  region  as  predicted  by
climate  models,  we  suggest  that  Douglas-fir  will  experience  progressive  temperature  limitation.

Published by Elsevier B.V.  
. Introduction

Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) is an ecolog-
cally and economically important tree species in forests of the
orth American Pacific Northwest (PNW) (Waring and Franklin,
979). The species is adapted to a wide range of climatic condi-
ions from moderate winter temperatures and ample precipitation
ear the coast to cold winters and dry summers at higher elevations

nland (Zhang and Hebda, 2004). It is the major timber species in the
egion constituting approximately 77% of the saw timber stumpage
olume and 87% of sales in the states of Washington and Oregon
n 2005 (Howard, 2007). Over 50% of the carbon in aboveground
iomass in the state of Oregon is stored in Douglas-fir (Donnegan
t al., 2008) making it a key species for the practice of carbon offset
orestry (Ryan et al., 2010).

Annual  summer drought, which typically lasts from July to
ctober, plays a major role in the functioning of PNW forests
Waring and Franklin, 1979). Shoot elongation and most wood
ormation occur before the onset of summer drought and the
epletion of soil moisture (Emmingham, 1977; Grotta et al., 2005;

∗ Corresponding author. Tel.: +1 541 754 4634; fax: +1 541 754 4799.
E-mail  address: beedlow.peter@epa.gov (P.A. Beedlow).
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Li and Adams, 1994). Global climate change (GCC) could alter
the onset, magnitude and duration of the summer drought. Cli-
mate model simulations suggest that by mid-century the PNW
will experience hotter, drier summers and warmer, wetter win-
ters with substantial decreases in snowpack (Mote and Salathé,
2010). Such climate changes will affect growth and reproduction
of Douglas-fir in the region both positively and negatively depend-
ing on elevation and site conditions (Littell et al., 2010). Changes
in the timing and magnitude of summer drought will alter pat-
terns of temperature and moisture within the growing season.
Understanding the relative importance of temperature and soil
moisture in the context of seasonal timing of Douglas-fir growth
will improve assessments of GCC effects on forest productivity and
carbon sequestration.

Soil  moisture during summer is a primary factor limiting
Douglas-fir growth in the PNW (Brubaker, 1980; Zhang and Hebda,
2004). Radial growth in Douglas-fir can be limited by low tem-
perature at the highest, snowiest elevations, but growth is often
limited by moisture in places that develop modest snowpack (Case
and Peterson, 2005; Littell et al., 2008). At elevations below the
seasonal snowpack, growth is negatively related to summer and

Open access under CC BY-NC-ND license.
annual temperature (Case and Peterson, 2005). The negative tem-
perature effect is thought to result from increasing water deficit in
trees as soil moisture is depleted during summer drought (Littell
et al., 2008).
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The effects of soil moisture and temperature on tree growth are
omplex and interdependent. Tree water deficits develop when
ater uptake by roots is exceeded by transpirational loss from

eaves, which is affected primarily by atmospheric Vapor Pressure
eficit (VPD) (Kramer, 1983). Water deficits reduce stomatal con-
uctance, net CO2 assimilation, cell division and cell enlargement
Hsiao and Acevedo, 1974) and develop under high or low soil mois-
ure conditions (Lassoie, 1982). Temperature directly affects VPD
s well as biochemical and enzymatic processes involved in cam-
ial growth (Rossi et al., 2006; Savidge and Förster, 1998; Uggla
t al., 1998). Further, the effects of temperature and soil moisture
n annual growth can change during the growing season (Lee et al.,
009).

Tree rings effectively represent annual growth over long time
eriods, but the interactive effects of seasonal environmental fac-
ors on growth are difficult to discern. Periodic measurement
f changes in stem radius or circumference using dendrometers
llows the timing of growth to be dated and, hence, associated with
easonal climate factors (Bormann and Kozlowski, 1962). How-
ver, growth measured with dendrometers can be complicated
y the shrink and swell caused by changes in tissue water con-
ent (Deslauriers et al., 2003b; Gall et al., 2002; Herzog et al.,
995; Lassoie, 1979; Zweifel and Häsler, 2001) and xylem water
otential (Abe et al., 2003; Irvine and Grace, 1997). Despite issues
f shrink–swell, dendrometer data taken at weekly to monthly
ntervals accurately represent both the timing and rate of growth
Deslauriers et al., 2007; Rossi et al., 2006; Tardif et al., 2001).

The objective of this study is to determine the relative
mportance of temperature and water to Douglas-fir growth. Den-
rometer measurements were taken year-round at approximately
our-week intervals from five Douglas-fir stands located along a
radient from the Pacific coast to ∼1200 m elevation in the Cascade
ountains of western Oregon, USA. Dendrometer derived basal

rea increment data were compared with site specific meteoro-
ogical and soil moisture data for the years 1998 through 2009.

e hypothesized that the importance of those factors would vary
cross the region depending on elevation and site characteristics.

. Materials and methods

.1. Research sites

Five mature, closed-canopy forest stands dominated by
ouglas-fir were located in western Oregon, USA (Fig. 1). The Coast

ite is in the Cascade Head Experimental Forest (US Forest Service)
n the west slope of the Oregon Coast Range 8.5 km from the Pacific
cean. The other four stands, collectively referred to as the Moun-

ain sites, are located in the Willamette National Forest (US Forest
ervice) on the west slope of the Cascade Mountains. Two sites,
alls Creek and Moose Mt., were at mid-elevation and two sites,
oad Creek and Soapgrass were at high elevation (Table 1).

Paired meteorological stations at each site were located in the
orest stand and in an adjacent open area (Beedlow et al., 2007a).
boveground meteorological data from the open site were used to
epresent conditions at the top of the tree canopy. Data collected
rom duplicate sensors located in the top of each forest canopy
hroughout 2010 indicated that during the growing season, air tem-
erature at the open sites was within a degree of the canopies. At
he Mountain sites the open areas were recent clear cuts (∼16 ha)
ithin 500 m of the forest sites with similar elevation, slope and

spect. At the Coast site the open meteorological station was placed

t an established weather monitoring station near the town of Otis,
regon (∼1 km from the Coast forest site, ∼2 ha open area).

Data were collected automatically at 5-min intervals and aver-
ged hourly year-round throughout the study with Campbell
 Meteorology 169 (2013) 174– 185 175

Scientific data loggers (Campbell Scientific, Logan, Utah). Sen-
sors were placed at a height of 3 m at each site. Air temperature
and relative humidity (RH) were measured using Campbell Scien-
tific HMP45 temperature–humidity sensors. Vapor pressure deficit
(VPD, MPa) was  calculated from temperature and RH data. Pho-
tosynthetically Active Radiation (PAR) data were collected using
LI-COR, LI-190SL sensors (Lincoln, NE, USA). Precipitation was
measured hourly using Texas Electronics TES25I (Dallas, TX, USA)
tipping bucket rain gages. Quality-assurance calibrations for the air
temperature and RH sensors were completed by the manufacturer
annually and every four years for dataloggers.

Volumetric soil moisture (Campbell Scientific CS-615 reflec-
tometers) and soil temperature (Campbell Scientific 107 Thermis-
tors) at 0.2 m increments to a depth of 0.6 m were automatically
collected at each forest meteorological station at 5-min intervals
and averaged hourly year-round throughout the study. Plant avail-
able soil water (W,  mm)  was  calculated for the top 0.6 m of soil
from moisture release curves developed for each site. Detailed soil
characteristics and soil moisture calculations are provided in Lee
et al. (2007) and Beedlow et al. (2007a).

Swiss Needle Cast (SNC) (Phaeocryptopus gaeumannii), a fungal
disease of Douglas-fir needles common in near-coastal forests, was
found at the Coast site. SNC affects both stomatal conductance and
needle longevity with consequent reduction in tree growth while
the inter-annual infection severity is affected by temperature and
precipitation (Manter et al., 2005). Annual surveys of the areal
extent of infection in coastal areas of the PNW conducted by the
Swiss Needle Cast Cooperative at Oregon State University (Shaw
and Woolley, 2009) were used as a proxy for infection severity at
the Coast site.

2.2. Growing season

We  defined the growing season as May  1 through October 31 at
the Coast and mid-elevation sites, and June 1 through October 31
at the high elevation sites. Our cambial activity data supported this
definition as did previous studies of Douglas-fir in western Oregon
(Emmingham, 1977; Grotta et al., 2005; Lassoie, 1982). A soil tem-
perature growth threshold of ∼5 ◦C has been shown for Douglas-fir
(Bailey and Harrington, 2006; Emmingham, 1977) and other north-
ern hemisphere conifer species (Deslauriers et al., 2003b; Rossi
et al., 2007; Shönenberger and Frey, 1988). Growth was assumed
not to occur when the average soil temperature was  <5 ◦C. Soil
temperature typically reached 5 ◦C at the mid-elevation sites in
May  and at the high elevation sites in June. During years with cold
springs, soil temperatures reached 5 ◦C later, which delayed the
onset of growth. Soil temperature at the Coast site was  consistently
>5 ◦C throughout the year. While the cessation of wood production
in the fall was more difficult to determine and can occur at higher
temperatures than necessary for growth initiation (Denne, 1971),
the growing season was considered to end when soil temperature
dropped to 5 ◦C, or by 31 October at all sites.

2.3. Growth measurements

Stem growth is defined as increase in size over time (Vaganov
et al., 2006) and is commonly determined by measuring positive
changes in stem Basal Area (BA) (Avery, 1975). Increases in BA
result from wood and bark formation or increased water content of
the elastic tissues, or both, while decreases result from shrinkage
of elastic tissues associated with water deficit (Zweifel et al., 2005).

During shrinkage, growth is slowed or stopped as wood formation
tends to cease when trees are under water stress for several days
or more (Abe et al., 2003). In Douglas-fir, cambial growth abruptly
ceases when pre-dawn xylem pressure potential falls below about
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Fig. 1. Map  showing the location of the study sites. An elevation profil

0.5 MPa, which is common during summer drought (Lassoie,
982).

We calculated changes in BA for each tree from repeated
easurements of stem circumference using manually read band

endrometer (Series 5 manual band dendrometers, 0.1 mm accu-
acy, Agricultural Electronics Corp, Tucson AZ). The dendrometers
ere read at ∼4-week intervals, year-round throughout the study.
etween the years 1998 and 2000, dendrometers were perma-

ently mounted at ∼1.4 m on 16–26 Douglas-fir trees without
isible signs of damage or disease at each site (Table 1). Trees
ere selected by stem diameter in proportion to their relative

bundance and characterized by canopy class (following Avery,

able 1
tand characteristics, mean temperature, precipitation and plant available soil water ove

Coast Moos

Lat., Long. (deg, min) 45:02 N, 123:54 W 44:40
Elevation (m)  146 658 

Stand  Age (yr) 140–150 100–1
Stand  Basal Area (m2 ha−1)a 82 61 

Fine  Root Biomass (g m−2)a 2.3 4.7 

Number of trees sampled 17 26 

Diameter range at 1.4 m (m)  1.0–1.5 0.6–0
Tree  height range (m) 55–58 44–58
Jan  mean daily air temperature (◦C) b 5.4 4.3 

Jul/Aug mean daily maximum air temperature (◦C) b 20.0 24.0 

Mean  annual precipitation (mm) b 2041 1614 

Mean  summer precipitation (mm) c 181 161 

Mean  daily VPD (MPa) c 0.22 0.66
Mean  daily minimum plant available soil water (mm);

0–0.6 m depth, % of max in parentheses b
93.9 (39%) 13.2 (

a From Lee et al. (2007).
b Mean values for the study period.
c June–September for the study period.
 Lincoln City to the Cascade crest is shown at the bottom of the figure.

1975). During installation the loose, outermost layers of bark were
removed, which ensured that the dendrometer bands were seated
firmly against bark. All sites were sampled within a week of each
other, each month during the growing season. Damaged den-
drometers and bands were replaced, but otherwise they remained
on the trees year-round. To reduce error associated with diurnal
water use, dendrometer readings were taken between 0900 and
1300 h Pacific Standard Time. Dendrometer data were corrected

for thermal expansion (Beedlow et al., 2007b)  and normalized to
10 ◦C for inter-site comparisons.

Basal Area Increment (BAI), the increase in BA over time,
was determined from growth curves developed from each tree’s

r the study period and characteristics of Douglas-fir trees with band dendrometers.

e Mt  Falls Creek Soapgrass Toad Creek

 N, 122:37 W 44:25 N, 122:24 W 44:21 N, 122:17 W 44:26 N, 122:02 W
530 1190 1198

10 110–120 400–460 150–200
60 148 85
5.9 3.5 7.5
26 16 21

.9 0.6–1.1 1.0–1.8 0.8–1.3
 48–63 37–65 48–63

3.5 1.7 1.3
24.8 23.8 25.7
1708 2014 2062
177 213 126
0.52 0.62 0.72

17%) 33.7 (23%) 36.0 (21%) 26.8 (32%)
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Fig. 2. Monthly Basal Area Increment (BAI). An example of how BAI was  calculated
from cumulative basal area (BA) data for the period from January 2006 to December
2009 using a 1.8 m (DBH) tree at the Soapgrass site. (A) Cumulative BA measure-
ments (open circles). Monotonically non-decreasing growth curve (solid line) fit to
the  BA data (solid circles) from the start of each growing season to the start of the
next.  BA for the first of each month interpolated from the growth curve (vertical
lines). (B) The daily BAI (mm2 d−1) linearly interpolated from annual growth curves
and averaged for each month (solid circles). Tic marks on the x-axis represent the
first day of each month. The high BAI values for November and December 2007 and
January 2008 reflect a cold, wet period with relative high snow accumulation com-
pared to low BAI values during the same period in the previous year, which was
m
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Fig. 3. Tree-ring chronologies. The cross-dated time series tree-ring data were log-

variables. In biological terms, seasonality is the inherent monthly
ild  and dry.

umulative BA data using a procedure derived from Zweifel et al.
2005) wherein growth was considered to be the monotonically
on-decreasing (≥0) BA over time. This approach reduced the
ffects of summer shrinks and winter swells related to weather
onditions. BAI was calculated for each tree over the study period
s follows: (1) Cumulative BA measurements were plotted over
he study period. (2) Growth curves from the start of each growing
eason to the start of the next were drawn through points in the BA
ata so that the resulting curve was monotonically non-decreasing.
3) BA for the first of each month was linearly interpolated from the
rowth curve. (4) The average daily BAI (mm2 d−1) was calculated
or each tree each month over the study period. An example for a
ingle tree over a portion of the study period is shown in Fig. 2.

Because changes in BA are affected by stem size, BAI was  con-
erted to Normalized Basal Area Increment (NBAI), a dimensionless
nit, to allow comparisons (West, 1980). NBAI for each tree at each
ite was calculated as the average BAI for any given month divided
y the average June BAI for the Coast and mid-elevation sites and
uly for high elevation sites. June and July are the months of highest
AI at the respective sites.

Tree cores were collected from each dendrometer tree over
he period 2009–2011 using a 5 mm diameter increment borer
Suunto, Vantaa, Finland) to relate annual dendrometer growth
ata to wood formation. The cores were processed and optically
canned. The digital images were analyzed to measure annual
rowth increments to the nearest 0.01 mm using the WinDENDRO
008 g tree-ring measuring system (Regent Instruments Inc., Que-
ec, Canada). The tree-ring width measurements were cross-dated
sing the COFECHA software (Tree-Ring Lab and Columbia Univer-
ity; Holmes, 1983) to ensure all annual radial growth increments
ere assigned the correct calendar year. Data were averaged across

rees to produce a master tree-ring chronology for each site. The

ree-ring width data displayed little to no non-climatic growth
rend since 1950. Consequently, tree-ring width data after 1950
ere not detrended, but were centered about zero by subtraction
transformed and averaged across trees to produce a master tree-ring chronology
for  each site. Data were centered about zero by subtracting the mean value for the
period 1950–2010.

from the mean value for the period 1950–2010 so as not to remove
any multi-decadal climatic trends (Fig. 3).

Shoot phenology, categorized as bud swell, bud break, shoot
elongation, or bud formation, was observed at each dendrome-
ter reading throughout the study. Cambial phenology, including
cambial activation, early- and latewood production and dormancy
was monitored from 2002 to 2004 at each dendrometer reading by
removing 5 mm cores from representative trees followed by micro-
scopic examination in the laboratory as described in Beedlow et al.
(2007b).

2.4. Statistical analyses

To examine the relationship between NBAI, air temperature
and W,  we  conducted a Structural Time Series (STS) analysis for
each site. Traditionally used for economics and social data (Harvey,
1989), STS is an advanced regression technique that allows for
simultaneously interacting variables. A key advantage of STS com-
pared to multiple regression and correlation analyses is that it
produces a seasonally adjusted and de-trended time series that
removes these confounding factors allowing for a straightforward
interpretation of the response to the factors of interest. More
recently, STS has been applied to ecological data from controlled
and observational studies of plant growth in response to climatic
factors (Beedlow et al., 2007a; Lee et al., 2009; Tingey et al., 2007).

The STS approach assumes that the mean response function
for NBAI can be attributed to seasonality, trend, and measured
pattern of stem growth, which includes unmeasured biological
and climate-related factors. The mean NBAI changed from month
to month throughout the growing season, consistent with the



178 P.A. Beedlow et al. / Agricultural and Forest Meteorology 169 (2013) 174– 185

Table 2
Components and measured variables in the structural time series regression model of Normalized Basal Area Increment (NBAI) shown in Eq. (1). The dependant variable,
NBAI  is the average monthly BAI (mm2 day−1) divided by the average June BAI over the study period (July for the high elevation sites) expressed as a dimensionless unit of
rate.  Model components are spelled out, variables are denoted with letters and parameters are denoted by Greek symbols in parentheses and correspond to the intercept for
seasonality and slopes for the others in Eq. (1).

Component/Variable (Parameter) Definition

Seasonality/NBAI (�) Average monthly pattern of NBAI for all years of the study.
Autoregression/NBAI (�12, �1) Lagged values of NBAI in a given month from year to year (SAR(1)), and from month to month in a given year (AR (1)).
Trend/C (�) Calendar year (C); change in NBAI (�) for specific months from year to year unaccounted for by the measured variables
T  (ˇ) Mean daily maximum air temperature over a given month (◦C).
W  (ˇ) Mean daily plant available soil water (0–0.6 m depth) over a given month (mm).
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VPD  (˛) Mean daily vapor pressure defic
PAR  (ω) Mean total daily photosynthetic
SNC  (�) Annual survey of Swiss needle c

easonal growth pattern of the trees. Trend is a directional change
n monthly NBAI over the study period not accounted for by
he measured variables. The tendency for tree growth in a given

onth to affect growth in the next month or the next year was
ccounted for by stochastic components for regular and seasonal
utoregression, AR(1) and SAR(1) respectively. The measured vari-
bles that significantly affected NBAI included: maximum daily
ir temperature (), W,  VPD, and for the Coast site, PAR and SNC.
he NBAI data for individual trees were treated as independent
eplications of a seasonal time series. Measured variable and
omponents are shown in Table 2. The basic model follows:

BAImt − �m
t = �1(NBAIm−1

t−1 − �m−1
t−1 ) + �12(NBAImt−12 − �m

t−12)

− �1 �12(NBAIt−13m−1 − �t−13m−1 ) + εt (1)

here, εt ∼ Normal Independent Distribution (0,	2) for
 = 1,2,. . .,N.and, �m

t = �m + �mCt + ˇ2T2
t + ˇ3Wt + ˇ4W2

t +
5TtWt + ˇ6T2

t W + ˇ7TtW2
t + ˛mVPDt + ωPARt + �mSNCt for

onths m in the growing season, and �m
t = 0 for months m

utside the growing season.
NBAImt and Ct (calendar year) in time t for t = 1,2,. . .,N month-

ears and month m. The unknown model coefficients are:
m = seasonality of month m,  and ˇ1, ˇ2,. . .,  ˇ7 = response surface
oefficients for T and W,  �m = trend of month m, ˛m = slope of VPD
f month m, ωm = slope of PAR of month m (Coast only), �m: slope
f SNC of month m (Coast only), �1 and �12 = AR(1) and SAR(1)
oefficients, respectively, and 	2 are the error variance.

The month-years outside of the growing season and cool spring
onths with mean soil temperature <5 ◦C were excluded from

he analysis. For the month-years included in the analysis, unsea-
onal weather events occasionally affected the timing or length of
rowing seasons, which affected the seasonal growth pattern. For
xample unseasonal cool, wet springs delayed the onset of growth
ut usually resulted in accelerated growth in summer. When all
rees in a stand had a similar response to unseasonal weather and
he weather event was recognized, adjustments to the seasonality
omponent of the model were made using intervention analysis
Box and Tiao, 1975). This technique allowed NBAI to be adjusted
or altered seasonal patterns due to extreme weather events and
ermitted a straightforward interpretation of response to climate
ariables.

Autocorrelation, the effect of NBAI in a given month on NBAI in
he next month or year, was described by homogeneous first-order
easonal autoregressive and first-order regular autoregressive
odels, SAR(1) and AR(1) respectively. These were identified

y using autocorrelation and partial autocorrelation functions
ACF and PACF, respectively) and optimization of the Akaike

nformation Criterion (AIC) and adjusted R2 (Box and Jenkins,
976; Chatfield, 2004), as well as the portmanteau test for zero
utocorrelations (Ljung and Box, 1978). We  used a heterogeneous
R(1)×SAR(1) model with a different �1 and �12 for each month
 a given month (MPa).
tive solar radiation between 400 and 700 nm over the sample period (�E)
gal infection (Shaw and Woolly 2009) in acres.

of the growing season based on fit to account for seasonal changes
in autocorrelation.

The measured variables, W,  VPD, PAR and SNC were compiled
as daily means for each month of each year. To account for the
effect of seasonality on NBAI, a different intercept for each month
in the growing season (�m) was  used (Fuller, 1976). We  also con-
sidered modeling the seasonality component as a trigonometric
function having periodicity of one year. The sinusoidal model for
de-seasonalizing the time series gave similar results as the step
function model, but it required more parameters and, so, was not
used. Time series plots of NBAI versus year for a given month iden-
tified both positive and negative trends for the Mountain sites
indicating that the monthly mean NBAI, �m, changed over the study
period. These trends in monthly NBAI were confirmed by multi-
decadal trends in the annual tree-ring width data that began around
1990 (Fig. 3). We included different month slopes for Trend in the
STS model to account for non-stationarity in the monthly means
for the Mountain sites. Similarly, inter-annual variations in NBAI
for a given month were also found to be linearly related to VPD at
all sites and to SNC and PAR at the Coast site. Consequently, dif-
ferent month slopes for VPD, SNC (Coast site), and PAR (Coast site)
were used to account for the seasonal effects of these factors on
NBAI.

The quadratic model for T was  the simplest non-linear model
that allowed for a daily maximum temperature optimum (Topt) in
NBAI (D’Arrigo et al., 2004). Given the response surface model in
Eq. (1),  a functional Topt is consistent with a positive value for ˇ1 +
ˇ5Wt + ˇ7W2

t and a negative value for 2ˇ2 + 2ˇ6Wt. Under these
conditions, Topt can be calculated by setting the partial derivative
of Eq. (1) with respect to T to zero and solving for the Topt as a
function of W:

Topt = −ˇ1 + ˇ5Wt + ˇ7W2
t

2ˇ2 + 2ˇ6Wt
(2)

Maximum Likelihood Estimation (MLE) was used to fit the curvi-
linear relationship between NBAI and environmental data at each
site assuming an AR(1) × SAR(1) autoregressive process for NBAI.
MLE  of the STS model parameters was performed using the PROC
NLIN procedure in SAS/STAT® software, Version 9.2 of the SAS Sys-
tem, as described in Fuller (1976).  The ACF and PACF calculations
were performed using the R statistical package, Version 2.9.0 (R
Development Core Team, 2009). Seasonal response surface models
for each site were chosen based on fit and parsimony by optimizing
the adjusted-R2 and AIC. The monthly intercepts for seasonality and
monthly coefficients for trend and VPD given in Eq. (1), and for SNC
and PAR for the Coast site were included in the mean response

function model with regard to parsimony. The relative contribu-
tion of seasonality, trend, autoregression„ W,  VPD, PAR and SNC
to NBAI was assessed using Kruskal’s (1987) measure of relative
importance.
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Table  3
Kruskal values of importance for the Structural Time Series (STS) analysis. The Kruskal method (Kruskal, 1987) estimates the relative importance of each variable to the fit
of  the regression model (R2). Each Kruskal value is the average of the squared partial correlation coefficients over all possible orderings of the predictor variables. Higher
Kruskal values indicate greater relative importance within a site. Positive and negative effects are indicated in parentheses. Parameters are defined in Table 2.

Component/Variable Coast Moose Mt  Falls Creek Soapgrass Toad Creek

R2 0.62 0.79 0.81 0.70 0.76
Seasonality 0.31 0.25 0.32 0.38 0.32
Autoregression 0.17 0.23 0.32 0.20 0.15
T  (+/−)  0.06 0.14 0.08 0.09 0.11
W  (+) 0.08 0.17 0.21 0.08 0.14
VPD  (−) 0.12 0.17 0.26 0.17 0.24
SNC (−) 0.07 a a a a

PAR (+) 0.05 b b b b

Trend b 0.23 (−) 0.04 (−) 0.09 (+) 0.17 (+)
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a Not applicable at that site and was not included in the model.
b Omitted because of parsimony.

. Results

The STS site-specific regression models fit the NBAI data very
ell. The models had a R2 of 0.62 at the Coast, while they ranged

rom 0.70 to 0.81 at the Mountain sites (Table 3). The Kruskal
ethod was used to indicate the relative importance of the com-

onents and measured variables on NBAI for each site (Table 3).
easonality and autoregression of NBAI were important compo-
ents of the STS model at all sites. Seasonality of NBAI, the inherent

ntra-annual growth pattern, was the dominant model component
t all but Falls Creek where it was of equal importance with autore-
ression. Autoregression, the lagged effect of NBAI on subsequent
onths and years, was generally next most important at all but

oad Creek where VPD and trend had higher importance values.
y accounting and adjusting the NBAI data for seasonality, autore-
ression and trend (see below) in the STS models, we were able to
esolve the relative importance of the measured variables (Table 3).

.1. Relative importance of T and W

Our results show that W is important to growth but must be
onsidered in light of, both were of similar importance to NBAI
xcept at Falls Creek where W was substantially more important
Table 3). To study the relation of T and W,  NBAI data were plot-
ed as a function of T and W (Fig. 4). The left-hand panels (A, C,
, G and I) show the adjusted NBAI averaged across all trees for
ach month, each year of the study period. The narrow temperature
ange at the Coast site is evident (Fig. 4A) compared to the relatively
road temperature range at Toad Creek (Fig. 4I). The Mountain sites
xperienced similar variations in W while the Coast was  noticeably
etter (Fig. 4A).

To examine the complex non-linear effects of T and W we  con-
tructed response surfaces of predicted NBAI to varying levels of T
nd W for each site as shown in the right-hand panels of Fig. 4(B, D,
, H and J). Response surfaces were generated from the site-specific
TS regression models to graphically show the relation between

 and W.  The response surfaces differed among sites, particularly
ith respect to temperature. Falls Creek (Fig. 4F) had a relatively flat
BAI response to T compared to the other sites, while at the Coast

t was pronounced. The response surface at Toad Creek was  unique
howing both a positive and negative response over the same range
f T depending on the level of W (Fig. 4J). Soapgrass had the steep-
st response to both T and W as reflected in shape of the response
urface (Fig. 4H).The response of NBAI to W was flattest at the Coast
Fig. 4B).

Values for Topt were calculated according to Eq. (2) and are

hown as dashed lines in Fig. 5. T and W interacted at Moose
t.  and Toad Creek. The result of this interaction was  that NBAI

ad temperature optima (Topt) that decreased with decreasing W
uring earlywood production at Moose Mt., and throughout the
growing season at Toad Creek (Fig. 5B and E). At Moose Mt.  the Topt

dropped from 22.3 ◦C in May  to 20.2 ◦C by July. The decrease at Toad
Creek was  more dramatic dropping from 30.7 ◦C in June to 12.7 ◦C
in September. The trees at the Coast, Falls Creek and Soapgrass
sites displayed no interaction between T and W and as a result, the
Topt was  19.5, 23.9 and 19.8 ◦C, respectively, at all levels of W.

Comparing the mean NBAI with mean T and W by month for the
study period revealed that T substantially exceeded Topt during the
growing season at Moose Mt., Soapgrass and Toad Creek on aver-
age (Fig. 5B, D and E) and occurred every year of the study (data
not shown). At the Coast and Falls Creek the monthly T was close
to Topt on average (Fig. 5A and C) and only in hot years was it sub-
stantially exceeded. In this figure values of, W and Topt are scaled
for ease of comparison. The highest NBAI occurred on average in
June at all sites except Soapgrass, which was July. The highest rates
of NBAI generally coincided with bud break, shoot elongation and
earlywood formation except at Toad Creek where the phenology
lagged somewhat. During July and August T exceeded Topt maxi-
mally at Moose Mt., Soapgrass and Toad Creek. At this time W was
rapidly being depleted. Summer temperatures at the Coast and Falls
Creek were very close to Topt on average. NBAI slowed markedly in
August, which corresponded to latewood formation and the end of
shoot elongation and T exceeded Topt. During September, W reached
minimum levels and Topt was exceeded only at the Toad Creek site.
NBAI increased in October at all sites. At that time T was  below Topt

at all sites and W began to rise with fall rains.

3.2. Effects of VPD, PAR and SNC

The effect of VPD on NBAI was  negative and roughly equal to
the combined importance of T and W at all sites, except at Moose
Mt.  (Table 3). VPD had a negative effect on NBAI at all sites in all
months, but was  not statistically significant during all months of
the growing season (Table 4). The effect tended to be stronger as
reflected in the magnitude of the slope coefficient in the regres-
sion models, early in the growing season when NBAI was highest
and W was  greater than 50% of maximum (Fig. 5). At the Coast
site VPD had the most effect in June and July, and although the
effects in August–October were lower than June and July, they
were higher than those at the other sites. The highest VPD effect
at Moose Mt.  occurred in June and at Falls Creek in May. In general,
large VPD coefficients were associated with periods of rapid growth
and ample W suggesting that stomatal conductance affected NBAI.
The effect of VPD tended to be less at lower levels of W during the
summer drought. The weakened VPD effect is likely related to the
development of long-term water deficits and longer periods of sto-

matal closure during the day. With the onset of fall rains, usually
in October, the effect of VPD increased at all sites, especially Toad
Creek. This corresponded to high fall NBAI values which may  be
associated with tissue rehydration.
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Fig. 4. The response of Normalized Basal Area Increment (NBAI) to maximum daily air temperature (T) and plant available soil water (W). Panels A, C, E, G and I show the
adjusted NBAI averaged across all trees for each sample period, each year. The data were adjusted for the effects of seasonality, autoregression, and VPD at all sites and for
trend,  PAR and SNC at sites where significant. Following adjustment the data points were scaled to one based on July NBAI for the high elevation sites and June for the others.
The  response surfaces of predicted NBAI generated from the site-specific time series regression models are shown in panels B, D, F, H and J. The surfaces are scaled to one
based on July NBAI for the high elevation sites and June for the others. Values greater than one occur when the NBAI in a given month exceeds the average value of the month
used  to standardize the data.
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Fig. 5. Seasonal patterns in NBAI. Mean values of unadjusted NBAI for each month averaged over the study period and scaled to one based on July NBAI for the high elevation
sites  and June for the others. Climatic variables are daily averages for each month over the study period. Proportion of maximum plant available water soil water (W) is solid
gray  lines. Average daily maximum air temperature (T) is the solid black lines; values are scaled by dividing by 20 such that 1.0 on the y-axis represents 20 ◦C. Dashed black
lines  represent the calculated temperature optimum (Topt) for each site. At the Coast (A), Falls Creek (C) and Soapgrass (D) sites, T and W did not interact; consequently the
T B) and
s , Bud f
E is rep

t
S
A
b
o

T
V
g

opt was the same at all levels of W,  19.5, 23.9 and 19.8 ◦C, respectively. Moose Mt.  (
hown  in the gray shaded boxes: Bud swell (s), Bud break (b), Shoot elongation (e)
arlywood formation (E), Latewood formation (L), Inactive (I). Tic marks on the x-ax

Only at the Coast site did SNC and PAR contributed significantly
o variation in NBAI at a level comparable to T and W (Table 3).
NC was significant and negatively related in the months of

ugust and September. During these months NBAI may  have
een affected by stomatal impairment and early abscission of the
lder needle classes from the growth of the fungal hyphae during

able 4
apor pressure deficit (VPD) importance during the growing season. The slope coefficie
rowing season. Values are regression slopes with standard errors in parentheses and are

Month Coast Moose Mt 

May  

June  −3.69 (0.70) −0.80 (0.09) 

July −5.30 (0.87) 

August −1.81 (0.67) −0.31 (0.08) 

September −0.43 (0.65) −0.15 (0.07) 

October −1.31 (0.84) −0.33 (0.14) 
 Toad Creek (E) both showed declining Topt with decreasing W.  Shoot phenology is
ormation (f). Cambial phenology is shown in the un-shaded boxes: Activation (A),
resent the first day of each month.

high infestation years. PAR was significant and positively related
during June and July. During these months coastal fog can be very
common. Compared to the Mountain sites during June and July,

the Coast receives about 20% less total radiation and about 20%
fewer hours where radiation exceeds 600 �mol  m−2 s−1, the light
saturation point of Douglas-fir (Lassoie, 1982).

nts represent the importance of the VPD variable on NBAI each month during the
 significantly different than zero with p < 0.01 (Likelihood Ratio Test).

Falls Creek Soapgrass Toad Creek

−0.99 (0.11)
−1.76 (0.26) −0.80 (0.20)

−0.43 (0.11)
−1.00 (0.10) −0.06 (0.11) −0.31 (0.14)
−0.46 (0.08) −0.14 (0.11) −0.38 (0.11)
−0.59 (0.13) −0.52 (0.24) −3.49 (0.40)
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.3. Trends in NBAI

Trend represents a shift in the seasonality of NBAI though
he study period, which was unaccounted for by the measured
ariables, and it was more important at the drier sites, Moose
t.  and Toad Creek, although it was notable at Falls Creek and

oapgrass (Table 3). The Coast site had no significant trend. Both
id-elevation sites had negative trends for July–August and for

une at Moose Mt.  (Table 5). Moose Mt.  shifted NBAI earlier as indi-
ated by a positive trend in May. At the high elevation sites, Toad
reek showed a positive trend in June, which reflected a shift in
eak NBAI from July to June. Soapgrass, the other high elevation
ite, showed a positive NBAI trend in July and August though of
ess relative importance (Table 3).

Correlation analyses were done to determine the relation
etween annual BAI and tree-ring widths over the years with
endrometer data. Tree-ring data taken from the trees with den-
rometers were compared with annual BAI calculated from the
ame trees. Correlation coefficients were positive at all sites:
oast = 0.78, Moose Mt.  = 0.84, Falls Creek = 0.71, Soapgrass = 0.67
nd Toad Creek = 0.68. The close correlation between BAI and tree-
ing widths provided a means to examine trends in NBAI within a
onger time-frame. The negative summer NBAI trend at Moose Mt.
nd Falls Creek was a continuation of declining growth since ∼1990
s seen in decreasing tree ring widths (Fig. 3). At the cooler, high ele-
ation sites, the positive NBAI trend corresponded with increased
ree ring widths since the early 1990s.

. Discussion

Growth limitation in PNW Douglas-fir has been generally
scribed to water stress during annual summer drought while high
roductivity is associated with cool, wet summers and mild win-
ers (Brubaker, 1980; Littell et al., 2008; Peterson and Heath, 1990;

aring and Franklin, 1979; Zhang and Hebda, 2004). We  found
hat both T and W affected Douglas-fir growth in similar propor-
ions on the west slope of the Oregon Cascade Mountains. Summer
emperatures exceed the growth optimum (Topt), and soil drying
xacerbated this by lowering the Topt at drier sites.

At the biochemical level increasing temperature above an opti-
um  reduces the CO2 specificity of Rubisco resulting in increased

hotorespiration (Brooks and Farquhar, 1985). Approximately
0 ◦C is optimal for Douglas-fir photosynthetic rates with sharp
eclines above 25 ◦C during rapid growth in western Oregon, USA
Lewis et al., 2001), which supports our finding of roughly 20 ◦C
s Topt for NBAI at sites where it does not shift with soil drying.
urther, increasing respiration with temperature has been shown
o increase the light compensation point in Douglas-fir resulting
n reduced net photosynthesis (Lewis et al., 1999). Stomatal con-
uctance for CO2 in Douglas-fir is optimal at about 20 ◦C (Lassoie,
982) although a temperature optimum range of 10–15 ◦C has
een reported during late winter and spring (Doehlert and Walker,
981). Under experimentally elevated air temperature of ∼4 ◦C, rel-
tive growth rates of Douglas-fir were higher in early spring but
ower during summer than controls (Olszyk et al., 1998) suggesting
hat summer temperatures exceeded optimum.

Variation in annual wood production is largely dependent on
he rate of cell division and size of the tracheids, which are affected
y temperature and available water, respectively (Mäkinen et al.,
003; Rossi et al., 2009). The rate of cell division has a stronger
ffect on annual ring width than the duration of cell division

Emmingham, 1977; Deslauriers et al., 2003a).  In Pinus densiflora
racheid diameter shows temperature optima of 16–18 ◦C for ear-
ywood and 23–25 ◦C for latewood (Vaganov et al., 2006). In Pinus
ylvestris mean daytime temperature of 21 ◦C is optimal for radial
 Meteorology 169 (2013) 174– 185

cell growth (Antonova & Stasova, 1993). Our dendrometer data
support a ∼20 ◦C temperature optimum as seen in physiology
studies. Similar to our findings with Douglas-fir, dendrometer mea-
surements of growth in boreal conifers demonstrate temperature
optima by responding positively to April and May  air temperature
but negatively to June and July temperature (Tardif et al., 2001).

The strong correlations between our dendrometer and tree
ring data confirm that NBAI is reflective of wood formation. Den-
drochronology data support an optimum temperature response
by recognizing a positive correlation of tree-ring width in PNW
Douglas-fir to spring temperature and a negative correlation
to summer temperature (Littell et al., 2008; Yeh and Wensel,
2000; Zhang and Hebda, 2004). Further evidence of tempera-
ture optimum is that ring width is positively correlated with
growing season length and summer temperature at higher ele-
vations and negatively correlated with summer temperature at
mid-elevations (Case and Peterson, 2005; Peterson and Heath,
1990). Dendrochronology studies (Griesbauer and Green, 2010;
Littell et al., 2008) emphasize the importance of temperature and
precipitation in prior years to growth in the current year. The
hypothesis is that carbon assimilation and growth in prior years
affects growth in the current year. The high relative importance of
the autoregressive component to NBAI at our sites supports this
hypothesis.

While we  were not able to precisely determine the level of W at
which Topt began to decrease at Moose Mt.  and Toad Creek, Granier
et al. (1999) suggests that water stress begins when 40% of plant
available water remains in the soil. In Douglas-fir sap flux begins
to fall rapidly once approximately 50% of available water in upper
0.6 m of soil is used (Warren et al., 2005). At our sites W typically
fell below 50% in July and T typically exceeded Topt before W fell
below 50% (Fig. 5).

Different patterns of T and W interactions with NBAI were found
for the five study sites (Fig. 4). Differences in environmental condi-
tions between the sites are responsible for the varying response of
NBAI to T and W.  Although increasing regional temperature since
1990 likely influenced increased growth trends at the high eleva-
tions sites and decreased growth trends the mid-elevation sites
(Fig. 3), local conditions influenced the relative importance of T
and W.  As was  suggested by Griesbauer and Green (2010),  local spa-
tial and temporal complexities make applying general species-level
predictions to climate difficult. For example it might be expected
that water limitation would decrease with increasing elevation.
Yet, W was substantially more important at one high elevation site
(Toad Creek) than at the other and was comparable to the mid-
elevation sites (Table 3). This difference was influenced by both
the lower water hold capacity of the soil and the fact that Toad
Creek receives about 60% of the summer precipitation received at
Soapgrass due to orographic influences.

Similarly, the relative importance of T and W to NBAI at the
mid-elevation sites was affected by site-specific conditions. At Falls
Creek, W was  substantially more important than T even though
W was depleted to a lesser extent than at Moose Mt.  during the
summer. At Moose Mt.  W and T were nearly equal in their relative
importance to NBAI. Again site conditions can explain these dif-
ferences. Falls Creek has a northern aspect and sits on a toe slope.
Moose Mt.  has a southern aspect and sits atop a ridge. As a result
temperatures at Falls Creek rarely exceed Topt during the growing
season; at Moose Mt.  it is commonplace. Moreover, the water hold-
ing capacity of the soils at Falls Creek is almost twice that at Moose
Mt.

The exposure and comparatively low water holding capacity of

the Moose Mt.  and Toad Creek sites contribute to their hot and dry
nature (Table 1). As a result both T and W are more often limiting
and exhibit an interactive effect—Topt decreased with decreasing W.
There was  no interaction between T and W at the more mesic sites,
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Table  5
Trends in NBAI during the growing season. The slope and standard errors in parentheses of the significant trend components of the STS regression models by month during
the  growing season for the study period. The Coast site had no significant trend. The slope represents the importance of the trend component on NBAI. Values are regression
slopes  with standard errors in parentheses and are significantly different than zero with p < 0.01 (Likelihood Ratio Test).

Moose Mt  Falls Creek Soapgrass Toad Creek

May 0.024 (0.009)
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June −0.048 (0.005) 

July  −0.017 (0.006) −0.022
August −0.013 (0.004) −0.013

oapgrass, Falls Creek and the Coast. At Soapgrass, T and W were
imilarly important even though W in the top 0.6 m became fairly
epleted during summer (Table 1) and T exceeded Topt from late

une to late September on average (Fig. 5). However, because the
oapgrass site has a shallow water table, the trees are able to access
ater below the measured 0.6 m throughout the growing season.
t Falls Creek growing season T was near Topt on average and was

ess extreme than Soapgrass (Fig. 3), which may have resulted in
he low importance of T compared to W at this site.

Over the course of the study at the Coast site, T exceeded the
opt of 19.5 ◦C during summer by less then 1.5 ◦C (Fig. 5). Average
aily maximum temperature for the months of July and August, the
armest months, did not exceeded 21 ◦C. Proximity to the ocean

nd frequent fog kept this site relatively cool throughout the sum-
er. The strong response to T shown in Fig. 4 reflects the strong

nfluence of VPD in NBAI (Table 4) more than limitation by exceed-
ng Topt. PAR had a positive effect on NBAI, which was likely due
o prevalence of summer fog and cloud cover. The areal infection
f SNC was negatively related to NBAI. The fungal hyphae, which
isibly protrude from the stomata, impede gas exchange and regu-
ation of transpiration, and impair photosynthetic activity (Johnson
t al., 2003, Manter et al., 2000). Most prevalent in coastal Douglas-
r plantations, SNC is endemic to naturally regenerated Douglas-fir

orests and is favored by warm winter and cool spring air temper-
ture and needle wetness (Black et al., 2010).

VPD can influence dendrometer measurements by affect-
ng wood formation and shrink–swell of elastic tissues through
hanges in stomatal conductance, water balance, air temperature
nd direct wetting of the bark (Gall et al., 2002; Zweifel et al.,
005). The importance of VPD at all sites resulted from these fac-
ors to varying degrees throughout the growing season. The relation
etween VPD and NBAI from May  to July is inconsistent across
he sites (Table 4). The reason for these inconsistencies is unclear
ut may  reflect the micro-climate differences between sites. For
xample, Falls Creek had higher T and soil temperature compared
o the other mountains sites in both May  and July, which may
ncrease the importance of VPD in those months. High VPD under

ell-watered conditions, such as spring and early summer, could
ause tissue shrinkage associated with internal water deficits and
educed assimilation due to stomatal closure. The VPD effect on
BAI was diminished during the dry, late summer and fall (Table 4)

ikely the result of long-term water deficits and stomatal closure
uring greater portions of the day (Lassoie, 1982), but the effect on
xtensible tissues of the cortex and phloem could have resulted in
hrink–swell.

The relative contribution of tissue swell and wood formation
o NBAI during the fall is uncertain. All sites displayed increases
n NBAI after September, which was most pronounced at Toad
reek (Fig. 5) and the coefficient for VPD was greatest in October
Table 4). Our phenology data showed that the cambium was inac-
ive by early October at the high elevation sites and by the end
f October at the rest. This suggests that increases in NBAI at

hat time are the result of tissue rehydration or continued expan-
ion of immature tracheids. Cambial division has been reported to
nd in western Oregon Douglas-fir between mid-September and
id-October (Emmingham, 1977; Grotta et al., 2005) although
0.068 (0.009)
5) 0.034 (0.011)
4) 0.027 (0.008)

Emmingham (1977) noted that cambial activity can occur in the fall
under favorable conditions. Further, growth can resume in the fall
with replenishment of soil water (Abe et al., 2003; Mäkinen et al.,
2003). Consequently, the extent to which the increased NBAI in late
summer and fall was a resumption of growth or tissue rehydration,
or a combination of both, is unclear.

The response of Douglas-fir growth to T and W demonstrated
in this study provides a basis for hypothesizing effects of GCC on
forests of the PNW, particularly the heavily forested areas domi-
nated by Douglas-fir west of the Cascade crest. The rate of global
warming has been consistent over the past 30 years with the
first decade of the 21st century the hottest on record (Foster and
Rahmstorf, 2011). Regional climate models predict progressively
hotter summers in the PNW through the 21st century with little
change in summer precipitation and substantial loss of snowpack
(Mote and Salathé, 2010). The negative trends in NBAI over the
study period and declining tree ring widths since 1990 at the mid-
elevation sites suggest these forests are already being negatively
affected by changing climate (Fig. 3). Conversely, higher elevation
forests are experiencing positive growth trends, both in NBAI and
tree ring width over the same timeframe, though this trend will
likely be reversed in the future as warming progresses and snow
pack declines. The Topt decreased with W at our drier sites suggest-
ing that temperature could become progressively more limiting to
Douglas-fir productivity with climate warming during the summer
growing season.

5. Conclusions

The objective of this study was  to evaluate the relative impor-
tance of air temperature and soil moisture by relating seasonal
growth of Douglas-fir to intra-annual temperature and moisture
conditions during the growing season. We  hypothesized that their
relative importance would vary across the region depending on
elevation and site conditions. We  found that both T and W affect
NBAI more or less equally at four of our five sites. NBAI exhibited a
temperature optimum, Topt, above which NBAI declined, and T and
W affected NBAI interactively at drier sites resulting in decreasing
Topt with decreasing W.  T is affecting growth consistently each year
at three of the five sites, at both mid- and high elevation. In years
with above average summer temperature, all sites are affected. We
conclude that both temperature and water are currently limiting
growth in western Oregon, and that shifting Topt is exacerbat-
ing temperature limitation at drier sites. Our results suggest that
Douglas-fir, the dominant species in these forests, is vulnerable to
hotter summers predicted by climate change models, particularly
on drier sites.
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