70 research outputs found

    Late stage kinetics for various wicking and spreading problems

    Full text link
    The kinetics of spreading of a liquid drop in a wedge or V-shaped groove, in a network of such grooves, and on a hydrophilic strip, is re-examined. The length of a droplet of volume Omega spreading in a wedge after a time t is predicted to scale as Omega^(1/5) * t^(2/5), and the height profile is predicted to be a parabola in the distance along the wedge. If the droplet is spreading radially in a sparse network of V-shaped grooves on a surface, the radius is predicted to scale as Omega^(1/6) * t^(1/3), provided the liquid is completely contained within the grooves. A number of other results are also obtained.Comment: 5 pages, 2 figures, RevTeX

    Network analysis of large-scale ImmGen and Tabula Muris datasets highlights metabolic diversity of tissue mononuclear phagocytes

    Get PDF
    The diversity of mononuclear phagocyte (MNP) subpopulations across tissues is one of the key physiological characteristics of the immune system. Here, we focus on understanding the metabolic variability of MNPs through metabolic network analysis applied to three large-scale transcriptional datasets: we introduce (1) an ImmGen MNP open-source dataset of 337 samples across 26 tissues; (2) a myeloid subset of ImmGen Phase I dataset (202 MNP samples); and (3) a myeloid mouse single-cell RNA sequencing (scRNA-seq) dataset (51,364 cells) assembled based on Tabula Muris Senis. To analyze such large-scale datasets, we develop a network-based computational approach, genes and metabolites (GAM) clustering, for unbiased identification of the key metabolic subnetworks based on transcriptional profiles. We define 9 metabolic subnetworks that encapsulate the metabolic differences within MNP from 38 different tissues. Obtained modules reveal that cholesterol synthesis appears particularly active within the migratory dendritic cells, while glutathione synthesis is essential for cysteinyl leukotriene production by peritoneal and lung macrophages

    Open Source ImmGen: network perspective on metabolic diversity among mononuclear phagocytes

    Get PDF
    We dissect metabolic variability of mononuclear phagocyte (MNP) subpopulations across different tissues through integrative analysis of three large scale datasets. Specifically, we introduce ImmGen MNP Open Source dataset that profiled 337 samples and extended previous ImmGen effort which included 202 samples of mononuclear phagocytes and their progenitors. Next, we analysed Tabula Muris Senis dataset to extract data for 51,364 myeloid cells from 18 tissues. Taken together, a compendium of data assembled in this work covers phagocytic populations found across 38 different tissues. To analyse common metabolic features, we developed novel network-based computational approach for unbiased identification of key metabolic subnetworks based on cellular transcriptional profiles in large-scale datasets. Using ImmGen MNP Open Source dataset as baseline, we define 9 metabolic subnetworks that encapsulate the metabolic differences within mononuclear phagocytes, and demonstrate that these features are robustly found across all three datasets, including lipid metabolism, cholesterol biosynthesis, glycolysis, and a set of fatty acid related metabolic pathways, as well as nucleotide and folate metabolism. We systematically define major features specific to macrophage and dendritic cell subpopulations. Among other things, we find that cholesterol synthesis appears particularly active within the migratory dendritic cells. We demonstrate that interference with this pathway through statins administration diminishes migratory capacity of the dendritic cells in vivo. This result demonstrates the power of our approach and highlights importance of metabolic diversity among mononuclear phagocytes

    Measurement of sound, vibration and friction between soft materials under light loads

    No full text
    Cataloged from PDF version of article.Tactile perception of materials and surface texture involves friction under light normal loads and is fundamental to further advancing areas such as tactile sensing, haptic systems used in robotic gripping of sensitive objects, and characterization of products that range from fabrics to personal care products, such as lotions, on skin. This paper describes a new apparatus to measure friction simultaneously with dynamic quantities such as accelerations, forces, and sound pressures resulting from light sliding contact over a soft material, much like a finger lightly touching a soft material. The paper also introduces a novel friction and adhesion measurement method that can be particularly useful for soft materials and light normal loads. (C) 2011 Elsevier B.V. All rights reserved

    Foam microgeometry

    No full text
    We present an experimental study of the influence of long range molecular forces on the 2D-foam microgeometry. It is shown that the disjoining pressure effect cause the Plateau angles to deviate from 120 degrees

    A distal intergenic region controls pancreatic endocrine differentiation by acting as a transcriptional enhancer and as a polycomb response element

    No full text
    Lineage-selective expression of developmental genes is dependent on the interplay between activating and repressive mechanisms. Gene activation is dependent on cell-specific transcription factors that recognize transcriptional enhancer sequences. Gene repression often depends on the recruitment of Polycomb group (PcG) proteins, although the sequences that underlie the recruitment of PcG proteins, also known as Polycomb response elements (PREs), remain poorly understood in vertebrates. While distal PREs have been identified in mammals, a role for positive-acting enhancers in PcG-mediated repression has not been described. Here we have used a highly efficient procedure based on lentiviral-mediated transgenesis to carry out in vivo fine-mapping of, cis-regulatory sequences that control lineage-specific activation of Neurog3, a master regulator of pancreatic endocrine differentiation. Our findings reveal an enhancer region that is sufficient to drive correct spacio-temporal expression of Neurog3 and demonstrate that this same region serves as a PRE in alternative lineages where Neurog3 is inactive

    The ectopic expression of Pax4 in the mouse pancreas converts progenitor cells into α and subsequently β cells.

    No full text
    We have previously reported that the loss of Arx and/or Pax4 gene activity leads to a shift in the fate of the different endocrine cell subtypes in the mouse pancreas, without affecting the total endocrine cell numbers. Here, we conditionally and ectopically express Pax4 using different cell-specific promoters and demonstrate that Pax4 forces endocrine precursor cells, as well as mature α cells, to adopt a β cell destiny. This results in a glucagon deficiency that provokes a compensatory and continuous glucagon+ cell neogenesis requiring the re-expression of the proendocrine gene Ngn3. However, the newly formed α cells fail to correct the hypoglucagonemia since they subsequently acquire a β cell phenotype upon Pax4 ectopic expression. Notably, this cycle of neogenesis and redifferentiation caused by ectopic expression of Pax4 in α cells is capable of restoring a functional β cell mass and curing diabetes in animals that have been chemically depleted of β cells
    corecore