SUPPLEMENTARY METHODS
GAM-clustering

The algorithm for multisample metabolic network clustering (hereinafter referred to as
GAM-clustering) identifies modules describing dynamic regulation of metabolism and is
based on the previously developed GAM method'?. GAM-clustering extends the GAM
method by setting the task to find not one but several metabolic modules (connected
subnetworks of metabolic network) with the condition that each of these modules should
contain as many metabolic genes with high pairwise correlation of their expression as
possible.

The metabolic network used in the current analysis is presented as a graph where vertices
are metabolites and edges are KEGG database reactions which are mapped with
catalysing them enzymes and corresponding genes. This network is an undirected
pseudograph. Totally, network contains all possible biological reactions documented in
KEGG database. Reactions specific for metabolism of Mus musculus were selected based

on gene annotation provided by KEGG and Bioconductor.

The initial approximation of the final metabolic modules is carried out by k-medoids
clustering of the expression matrix of all metabolic genes of the dataset with some
arbitrary parameter k£ (here used £=32). Each cluster forms a corresponding expression
pattern which can be determined as the averaged value of z-normalized gene expression
values in this cluster. Then, a gene’s score relative to each cluster is calculated according
to formula (4). This score represents similarity of gene expression with the module’s

pattern (1) and dissimilarity with other modules’ patterns (3). Formally, score is defined as

follows:
d(gi,c;) =1 — cor(g;, c;) (1),
d(gi,co) = base (2),
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where g; — expression of i-th gene, i € (1, N);
c; — pattern of j-th cluster, j € (1, M); ¢, — pattern of j-th cluster or fake pattern, j € (0, M);
co — fake pattern;

d — distance to the pattern score is being calculated for;



d’' - distance to the pattern which this gene has the most correlation with
(all other patterns except the pattern the score being calculated for are considered);

base — distance to fake pattern.

The following approach allows to avoid collapsing similar modules with enough supporting

genes into one module as only one positive score per gene is possible.

Thus, a set of networks where each edge is weighted according to its gene score is
formed. For each pattern a connected subgraph of maximal weight is found. These
subgraphs are called metabolic modules. This procedure is carried out by a SGMWCS
(signal  generalized maximum  weight  connected  subgraph)  solver'®#
(https://github.com/ctlab/sgmwcs-solver) which uses the IBM ILOG CPLEX library that

efficiently performs many iterations of this method in a reasonable amount of time. Thus,
an iterative procedure of metabolic modules refinement is performed in a process of
updating each of the patterns by replacing it with an averaged gene expression of the

module’s edges with a positive score.

One of the important parts in the procedure of updating the modules is the question when
to stop. To detect this, the difference between the values of the patterns of the current
iteration and the values of the patterns of all previous iterations, in which there were the
same number of modules, is found (this is done to avoid missing the situation when new
iteration comes to the condition close to one that once already has occurred). If difference
is large (>0.01) which means that pattern content is quite changed, a new score set is
calculated and a new iteration is performed. If the difference between patterns is small
enough (<0.01), but non-informative (having less than 5 edges and/or diameter less than
4) modules are still presented in the output, the less informative (most correlated with any
other graph) module is eliminated from the further analysis. After removing one module,
the weights are recalculated and a new iteration of refinement is performed. The final
result is a set of specific subnetworks that reflect metabolic variability among the samples
of the analysed transcriptome data.

The GAM clustering method has two parameters: the number of initial clusters k (here
used £k=32) and the distance to the fake pattern base (here used base=0.4). They directly
affect the number, size, intramodular characteristics, and the number of unique annotating

pathways of the resulting modules (Supplementary Fig. 5a,b).

To explore the influence of k£ value to number of final modules the model data were

designed. They imitate experiment with complex design (15, 18 or 21 samples) where


https://github.com/ctlab/sgmwcs-solver

several (5, 10 or 15) modules are active each in a particular subset of samples. All
combinations of these data were analysed by the GAM-clustering method and the
following output features were calculated: number of final modules found by method,
number of iteration performed and time elapsed during the analysis (Supplementary Fig.
5a). As these data were modelled, we know how many modules are there in each
experiment (dashed line in Supplementary Fig. 5a) and therefore we can evaluate how
the number of found modules relates to the number of real modules. In most cases GAM-
clustering found approximately all real modules when launched with the value k several
times greater that the number of real modules. Moreover, a further increase of k£ does not
lead to improved results, but nonlinearly increases the number of iterations and the
working time of the method. Thus, it is reasonable to detect some advisable & value so that
user gets approximately full set of modules and does not spend to much time for the
analysis. As in real data we do not know the number of real modules there is a heuristic
approach that allows to find some k£ based on the characteristics of the input data. This
approach is based on elbow method that calculates the total within-cluster sum of square
(wss) for each k. As expression data have significant noise contribution there is no
pronounced inflection point where wss is sharply stops decreasing (usually this point is
considered equal to the optimal number of clusters). Here, we used point where the slope
of the wss curve is 50% of its steepest slope. Corresponding to this point value of k is
rounded to the nearest value used in the practice (16, 24, 32, 40, 48, 56, 64), and the

obtained value is proposed by the method as the recommended £ value.

The strategy for selecting optimal value of base parameter was formed on the basis of real
data analysis, since it requires consideration of the biological meaning of the obtained
modules. At the beginning of the analysis, the GAM-clustering algorithm produces some
recommended value of k£ (see previous paragraph). For this k, we can calculate the
average dissimilarity (distance) between the observations of the initial cluster and this
cluster’s medoid over all clusters. Obtained value is proposed by the method as the
recommended value of the base parameter. For the InmGen MNP OS data analysed in
this study, they were 32 initial clusters proposed and the recommended base value was
equal to 0.4. This base value was determined to be optimal during the comparative study
of the results obtained with other different base values (Supplementary Fig. 5b). The
optimality criterion included the calculation of the following characteristics of the output
modules: their number, size, average correlation of edges, the number of unique
annotating paths, the number of annotating paths corresponding to one cluster only, the

percentage of genes with negative score, the percentage of genes with negative



correlation, the percentage of genes with correlation less than 1-base. Noticeably, such
characteristics as the average number of genes in the module, the average percentage of
genes with negative score and correlation, as well as with a correlation less than 1 — base,
are minimal for the recommended base value (0.4). This indicates that the modules
obtained for base = 0.4 have good internal correlation, as well as compactness. Modules
obtained with a lower base value also show good internal correlation, but they are
characterized by the loss of a large number of significant modules. It is worth noting that
for base = 0.2 no modules were found. Modules obtained with larger base values, on the
contrary, are annotated with a bigger number of unique canonical pathways, however,
many of these pathways relate to the same biochemical processes. Moreover, these

modules are characterized by lower rates of intramodular correlation.

Even though default values of £ and base parameters are proposed to user before the
analysis based on the input data properties, there is still an opportunity for user to select
custom values of these parameters. Nevertheless, the general recommendation is to stick
with the proposed value of the base parameter, since its changes lead to the strong

alterations in the size and content of the final modules.

GAM-clustering method is applicable not to bulk RNA-seq data only but to single-cell RNA-
seq data as well. Single-cell data need an additional step of preprocessing implying
transformation of individual cells into technical samples. This is performed based on
averaging gene expression of individual cells inside high resolution clusters. In case of
single-cell RNAseq data, among final metabolic modules might occur ones that do not
cover all biological replicas of cell types they are specific for. These modules are

eliminated from the final result.

The final metabolic modules are subnetworks of the overall metabolic network that contain
a set of closely located genes with high correlation of their expression profile across all

samples.

Code is available at https://qgithub.com/artyomovilab/ImmGenOpenSource.
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SUPPLEMENTARY FIGURE LEGENDS

Supplementary figure 1. Principal component analysis (PCA) of ImmGen MNP OS
dataset based on 12,000 most expressed genes across all samples colored by lab of
samples sorting (a) and batch of samples sequencing (b). Axes are the first two principal
components (PCs). ¢, Boxplots of either raw either normalized counts of 12,000 most
expressed genes across all samples.

Supplementary figure 2. Principal component analysis (PCA) of ImmGen MNP OS
dataset based on 12,000 most expressed genes across all samples colored by cell specific
markers expression (from lowest as blue to highest as red). Axes are the first two principal
components (PCs).

Supplementary figure 3. a, Principal component analysis (PCA) based on 12,000 most
expressed genes across all samples colored by intensity of gene expression (from lowest
as blue to highest as red) of several KEGG and Reactome canonical pathways for
ImmGen MNP OS (a) and ImmGen MNP P1 (b) datasets.

Supplementary figure 4. Violin plot for the number of genes in the cells of each natural
cluster of mTMS dataset.

Supplementary figure 5. Analysis of k& and base parameter values influence to
characteristics of final modules performed on model (a) and InmGen MNP OS (b)
data. a, Model data imitate experiment with complex design (15, 18 or 21 samples; shown
by row splitting) where several modules (5, 10 or 15; shown by colored dashed line in the
first column) are active each in a particular subset of samples. All combinations of these
data were analysed by the GAM-clustering method with k values equal to 16, 24, 32, 40,
48, 56 or 64 and the following output features were calculated: number of final modules
found by method (first column), number of iterations performed (second column) and time
elapsed during the analysis (third column). b, Comparative study of the results obtained
after GAM-clustering analysis of the InmGen MNP OS data (with 32 initial clusters) with
different base values (0.3, 0.4, 0.5 or 0.6). Optimal value for the base parameter (framed)
was determined by the calculation of various characteristics of the output modules.

Supplementary figure 6. Principal component analysis (PCA) of ImmGen MNP OS
dataset in module (a) and transcriptional (b) spaces across all samples colored on the
basis of its belonging to a particular metasample (metasample names are given based on
the major cell type in the current metasample: Mo — monocyte, MF — macrophage, DC —
dendritic cell, YS MF — yolk sac macrophage, EB MF — embryoid body macrophage, alvMF
— alveolar macrophage, SPM — small peritoneal macrophage, MG — microglia, pDC —
plasmacytoid dendritic cell, migDC — migratory dendritic cell).

Supplementary figure 7. UMAP plots colored by intensity of gene expression (from
lowest as blue to highest as red) of modules derived from GAM-clustering analysis of
MTMS dataset; prog — progenitor, MF — macrophage, alvMF — alveolar macrophage, MG —
microglia, KC — Kupffer cell, Mo — monocyte, DC — dendritic cell, NP — neutrophil.

Supplementary figure 8. Metabolic modules 1 (a) and 2 (b) per se (subnetworks
associated with lipid metabolism). Edges of modules are attributed with color according
to correlation of its enzyme’s gene expression to this particular module pattern and with
thickness according to its score.



Supplementary figure 9. Subnetworks associated with fatty acid synthesis in
cytosol (b) and mitochondria (c). a, Heatmaps of module patterns along with the
expression of some of its genes (from lowest as blue to highest as red). b,c, Metabolic
modules per se and corresponding schematic diagrams. Edges of modules are attributed
with color according to correlation of its enzyme’s gene expression to this particular
module pattern and with thickness according to its score. d, Enrichment of modules genes
expression (from lowest as blue to highest as red, transparent dots correspond to treated
samples) across all three analysed datasets.
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Supplementary figure 2
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Supplementary figure 7

modules derived from GAM-clustering analysis of mTMS dataset
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