216 research outputs found

    Relativistic effects in electromagnetic nuclear responses in the quasi-elastic delta region

    Get PDF
    A new non-relativistic expansion in terms of the nucleon's momentum inside nuclear matter of the current for isobar electro-excitation from the nucleon is performed. Being exact with respect to the transferred energy and momentum, this yields new current operators which retain important aspects of relativity not taken into account in the traditional non-relativistic reductions. The transition current thus obtained differs from the leading order of the traditional expansion by simple multiplicative factors. These depend on the momentum and energy transfer and can be easily included together with relativistic kinematics in non-relativistic, many-body models of isobar electro-excitation in nuclei. The merits of the new current are tested by comparing with the unexpanded electromagnetic nuclear responses in the isobar peak computed in a relativistic Fermi gas framework. The sensitivity of the relativistic responses to the isobar's magnetic, electric and Coulomb form factors and the finite width of the isobar is analyzed.Comment: 26 pages plus 6 figure

    Delta-isobar relativistic meson exchange currents in quasielastic electron scattering

    Get PDF
    We study the role of the Ξ”\Delta-isobar current on the response functions for high energy inclusive quasielastic electron scattering from nuclei. We consider a general Lagrangian which is compatible with contact invariance and perform a fully relativistic calculation in first-order perturbation theory for one-particle emission. The dependence of the responses upon off-shell parametrizations is analyzed and found to be mild. A discussion of scaling behaviour and a comparison with various non-relativistic approaches are also presented.Comment: 26 pages, 9 figures; one page of text added; corrected errors in eq

    Nucleon to Delta Weak Excitation Amplitudes in the Non-relativistic Quark Model

    Full text link
    We investigate the nucleon to Delta(1232) vector and axial vector amplitudes in the non-relativistic quark model of the Isgur-Karl variety. A particular interest is to investigate the SU(6) symmetry breaking, due to color hyperfine interaction. We compare the theoretical estimates to recent experimental investigation of the Adler amplitudes by neutrino scattering.Comment: \documentstyle[aps]{revtex}, 21pages; 11 postscript figures. Accepted for publication by Phys. Rev.

    Comparison of the functional and structural characteristics of rare TSC2 variants with clinical and genetic findings

    Get PDF
    The TSC1 and TSC2 gene products interact to form the tuberous sclerosis complex (TSC), an important negative regulator of the mechanistic target of rapamycin complex 1 (TORC1). Inactivating mutations in TSC1 or TSC2 cause TSC, and the identification of a pathogenic TSC1 or TSC2 variant helps establish a diagnosis of TSC. However, it is not always clear whether TSC1 and TSC2 variants are inactivating. To determine whether TSC1 and TSC2 variants of uncertain clinical significance affect TSC complex function and cause TSC, in vitro assays of TORC1 activity can be employed. Here we combine genetic, functional, and structural approaches to try and classify a series of 15 TSC2 VUS. We investigated the effects of the variants on the formation of the TSC complex, on TORC1 activity and on TSC2 pre-mRNA splicing. In 13 cases (87%), the functional data supported the hypothesis that the identified TSC2 variant caused TSC. Our results illustrate the benefits and limitations of functional testing for TSC

    ZIP8 Zinc Transporter: Indispensable Role for Both Multiple-Organ Organogenesis and Hematopoiesis In Utero

    Get PDF
    Previously this laboratory characterized Slc39a8-encoded ZIP8 as a Zn2+/(HCO3–)2 symporter; yet, the overall physiological importance of ZIP8 at the whole-organism level remains unclear. Herein we describe the phenotype of the hypomorphic Slc39a8(neo/neo) mouse which has retained the neomycin-resistance gene in intron 3, hence causing significantly decreased ZIP8 mRNA and protein levels in embryo, fetus, placenta, yolk sac, and several tissues of neonates. The Slc39a8(neo) allele is associated with diminished zinc and iron uptake in mouse fetal fibroblast and liver-derived cultures; consequently, Slc39a8(neo/neo) newborns exhibit diminished zinc and iron levels in several tissues. Slc39a8(neo/neo) homozygotes from gestational day(GD)-11.5 onward are pale, growth-stunted, and die between GD18.5 and 48 h postnatally. Defects include: severely hypoplastic spleen; hypoplasia of liver, kidney, lung, and lower limbs. Histologically, Slc39a8(neo/neo) neonates show decreased numbers of hematopoietic islands in yolk sac and liver. Low hemoglobin, hematocrit, red cell count, serum iron, and total iron-binding capacity confirmed severe anemia. Flow cytometry of fetal liver cells revealed the erythroid series strikingly affected in the hypomorph. Zinc-dependent 5-aminolevulinic acid dehydratase, required for heme synthesis, was not different between Slc39a8(+/+) and Slc39a8(neo/neo) offspring. To demonstrate further that the mouse phenotype is due to ZIP8 deficiency, we bred Slc39a8(+/neo) with BAC-transgenic BTZIP8-3 line (carrying three extra copies of the Slc39a8 allele); this cross generated viable Slc39a8(neo/neo)_BTZIP8-3(+/+) pups showing none of the above-mentioned congenital defects–proving Slc39a8(neo/neo) causes the described phenotype. Our study demonstrates that ZIP8-mediated zinc transport plays an unappreciated critical role during in utero and neonatal growth, organ morphogenesis, and hematopoiesis

    A Process Γ— Domain Assessment of Narcissism: The Domain-Specific Narcissistic Admiration and Rivalry Questionnaire

    Get PDF
    Research on grandiose narcissism distinguishes between self-promotional processes (i.e., narcissistic admiration) and other-derogative processes (i.e., narcissistic rivalry; Back et al., 2013). Moreover, research has begun to assess and investigate narcissistic manifestations in different domains (e.g., communal narcissism). To integrate these two lines of research, we developed the Domain-Specific Narcissistic Admiration and Rivalry Questionnaire (D-NARQ), a 72-item narcissism questionnaire that contains a self-promotional process scale (narcissistic admiration) and an other-derogatory process scale (narcissistic rivalry) for four domains: intellectual ability, social dominance, communal care, and physical attractiveness. We investigated the psychometric properties of the D-NARQ in a large online study (N = 1,635). Model fit statistics were largely in line with the theorized factor structure. The D-NARQ scales had good to very good measurement precision, and their correlations with established narcissism scales, the Big Five personality traits, and comparative self-evaluations largely supported their convergent and discriminant validity

    Cyclin T1-Dependent Genes in Activated CD4+ T and Macrophage Cell Lines Appear Enriched in HIV-1 Co-Factors

    Get PDF
    HIV-1 is dependent upon cellular co-factors to mediate its replication cycle in CD4+ T cells and macrophages, the two major cell types infected by the virus in vivo. One critical co-factor is Cyclin T1, a subunit of a general RNA polymerase II elongation factor known as P-TEFb. Cyclin T1 is targeted directly by the viral Tat protein to activate proviral transcription. Cyclin T1 is up-regulated when resting CD4+ T cells are activated and during macrophage differentiation or activation, conditions that are also necessary for high levels of HIV-1 replication. Because Cyclin T1 is a subunit of a transcription factor, the up-regulation of Cyclin T1 in these cells results in the induction of cellular genes, some of which might be HIV-1 co-factors. Using shRNA depletions of Cyclin T1 and transcriptional profiling, we identified 54 cellular mRNAs that appear to be Cyclin T1-dependent for their induction in activated CD4+ T Jurkat T cells and during differentiation and activation of MM6 cells, a human monocytic cell line. The promoters for these Cyclin T1-dependent genes (CTDGs) are over-represented in two transcription factor binding sites, SREBP1 and ARP1. Notably, 10 of these CTDGs have been reported to be involved in HIV-1 replication, a significant over-representation of such genes when compared to randomly generated lists of 54 genes (p value<0.00021). The results of siRNA depletion and dominant-negative protein experiments with two CTDGs identified here, CDK11 and Casein kinase 1 gamma 1, suggest that these genes are involved either directly or indirectly in HIV-1 replication. It is likely that the 54 CTDGs identified here include novel HIV-1 co-factors. The presence of CTDGs in the protein space that was available for HIV-1 to sample during its evolution and acquisition of Tat function may provide an explanation for why CTDGs are enriched in viral co-factors

    Mechanisms of Intragastric pH Sensing

    Get PDF
    Luminal amino acids and lack of luminal acidity as a result of acid neutralization by intragastric foodstuffs are powerful signals for acid secretion. Although the hormonal and neural pathways underlying this regulatory mechanism are well understood, the nature of the gastric luminal pH sensor has been enigmatic. In clinical studies, high pH, tryptic peptides, and luminal divalent metals (Ca2+ and Mg2+) increase gastrin release and acid production. The calcium-sensing receptor (CaSR), first described in the parathyroid gland but expressed on gastric G cells, is a logical candidate for the gastric acid sensor. Because CaSR ligands include amino acids and divalent metals, and because extracellular pH affects ligand binding in the pH range of the gastric content, its pH, metal, and nutrient-sensing functions are consistent with physiologic observations. The CaSR is thus an attractive candidate for the gastric luminal sensor that is part of the neuroendocrine negative regulatory loop for acid secretion

    The Death Effector Domains of Caspase-8 Induce Terminal Differentiation

    Get PDF
    The differentiation and senescence programs of metazoans play key roles in regulating normal development and preventing aberrant cell proliferation, such as cancer. These programs are intimately associated with both the mitotic and apoptotic pathways. Caspase-8 is an apical apoptotic initiator that has recently been appreciated to coordinate non-apoptotic roles in the cell. Most of these functions are attributed to the catalytic domain, however, the amino-terminal death effector domains (DED)s, which belong to the death domain superfamily of proteins, can also play key roles during development. Here we describe a novel role for caspase-8 DEDs in regulating cell differentiation and senescence. Caspase-8 DEDs accumulate during terminal differentiation and senescence of epithelial, endothelial and myeloid cells; genetic deletion or shRNA suppression of caspase-8 disrupts cell differentiation, while re-expression of DEDs rescues this phenotype. Among caspase-8 deficient neuroblastoma cells, DED expression attenuated tumor growth in vivo and proliferation in vitro via disruption of mitosis and cytokinesis, resulting in upregulation of p53 and induction of differentiation markers. These events occur independent of caspase-8 catalytic activity, but require a critical lysine (K156) in a microtubule-binding motif in the second DED domain. The results demonstrate a new function for the DEDs of caspase-8, and describe an unexpected mechanism that contributes to cell differentiation and senescence
    • …
    corecore