Abstract

A new non-relativistic expansion in terms of the nucleon's momentum inside nuclear matter of the current for isobar electro-excitation from the nucleon is performed. Being exact with respect to the transferred energy and momentum, this yields new current operators which retain important aspects of relativity not taken into account in the traditional non-relativistic reductions. The transition current thus obtained differs from the leading order of the traditional expansion by simple multiplicative factors. These depend on the momentum and energy transfer and can be easily included together with relativistic kinematics in non-relativistic, many-body models of isobar electro-excitation in nuclei. The merits of the new current are tested by comparing with the unexpanded electromagnetic nuclear responses in the isobar peak computed in a relativistic Fermi gas framework. The sensitivity of the relativistic responses to the isobar's magnetic, electric and Coulomb form factors and the finite width of the isobar is analyzed.Comment: 26 pages plus 6 figure

    Similar works