63 research outputs found

    Tight coupling in thermal Brownian motors

    Get PDF
    We study analytically a thermal Brownian motor model and calculate exactly the Onsager coefficients. We show how the reciprocity relation holds and that the determinant of the Onsager matrix vanishes. Such condition implies that the device is built with tight coupling. This explains why Carnot's efficiency can be achieved in the limit of infinitely slow velocities. We also prove that the efficiency at maximum power has the maximum possible value, which corresponds to the Curzon-Alhborn bound. Finally, we discuss the model acting as a Brownian refrigerator

    Networks of strong ties

    Full text link
    Social networks transmitting covert or sensitive information cannot use all ties for this purpose. Rather, they can only use a subset of ties that are strong enough to be ``trusted''. In this paper we consider transitivity as evidence of strong ties, requiring that each tie can only be used if the individuals on either end also share at least one other contact in common. We examine the effect of removing all non-transitive ties in two real social network data sets. We observe that although some individuals become disconnected, a giant connected component remains, with an average shortest path only slightly longer than that of the original network. We also evaluate the cost of forming transitive ties by deriving the conditions for the emergence and the size of the giant component in a random graph composed entirely of closed triads and the equivalent Erdos-Renyi random graph.Comment: 10 pages, 7 figure

    Energetics of rocked inhomogeneous ratchets

    Get PDF
    We study the efficiency of frictional thermal ratchets driven by finite frequency driving force and in contact with a heat bath. The efficiency exhibits varied behavior with driving frequency. Both nonmonotonic and monotonic behavior have been observed. In particular the magnitude of efficiency in finite frequency regime may be more than the efficiency in the adiabatic regime. This is our central result for rocked ratchets. We also show that for the simple potential we have chosen, the presence of only spatial asymmetry (homogeneous system) or only frictional ratchet (symmetric potential profile), the adiabatic efficiency is always more than in the nonadiabatic case.Comment: 5 figure

    Spontaneous Oscillations of Collective Molecular Motors

    Full text link
    We analyze a simple stochastic model to describe motor molecules which cooperate in large groups and present a physical mechanism which can lead to oscillatory motion if the motors are elastically coupled to their environment. Beyond a critical fuel concentration, the non-moving state of the system becomes unstable with respect to a mode with angular frequency omega. We present a perturbative description of the system near the instability and demonstrate that oscillation frequencies are determined by the typical timescales of the motors.Comment: 11 pages, Revtex, 4 pages Figure

    Scale-free energy dissipation and dynamic phase transition in stochastic sandpiles

    Full text link
    We study numerically scaling properties of the distribution of cumulative energy dissipated in an avalanche and the dynamic phase transition in a stochastic directed cellular automaton [B. Tadi\'c and D. Dhar, Phys. Rev. Lett. {\bf 79}, 1519 (1997)] in d=1+1 dimensions. In the critical steady state occurring for the probability of toppling ppp\ge p^\star= 0.70548, the dissipated energy distribution exhibits scaling behavior with new scaling exponents τE\tau_E and D_E for slope and cut-off energy, respectively, indicating that the sandpile surface is a fractal. In contrast to avalanche exponents, the energy exponents appear to be p- dependent in the region pp<1p^\star \le p <1, however the product (τE1)DE(\tau_E-1)D_E remains universal. We estimate the roughness exponent of the transverse section of the pile as χ=0.44±0.04\chi =0.44\pm 0.04. Critical exponents characterizing the dynamic phase transition at pp^\star are obtained by direct simulation and scaling analysis of the survival probability distribution and the average outflow current. The transition belongs to a new universality class with the critical exponents ν=γ=1.22±0.02\nu_\| =\gamma =1.22 \pm 0.02, β=0.56±0.02\beta =0.56\pm 0.02 and ν=0.761±0.029\nu_\bot = 0.761 \pm 0.029, with apparent violation of hyperscaling. Generalized hyperscaling relation leads to β+β=(d1)ν\beta + \beta ^\prime = (d-1)\nu_\bot , where β=0.195±0.012\beta ^\prime = 0.195 \pm 0.012 is the exponent governed by the ultimate survival probability

    Islands of conformational stability for Filopodia

    Get PDF
    Filopodia are long, thin protrusions formed when bundles of fibers grow outwardly from a cell surface while remaining closed in a membrane tube. We study the subtle issue of the mechanical stability of such filopodia and how this depends on the deformation of the membrane that arises when the fiber bundle adopts a helical configuration. We calculate the ground state conformation of such filopodia, taking into account the steric interaction between the membrane and the enclosed semiflexible fiber bundle. For typical filopodia we find that a minimum number of fibers is required for filopodium stability. Our calculation elucidates how experimentally observed filopodia can obviate the classical Euler buckling condition and remain stable up to several tens of . We briefly discuss how experimental observation of the results obtained in this work for the helical-like deformations of enclosing membrane tubes in filopodia could possibly be observed in the acrosomal reactions of the sea cucumber Thyone, and the horseshoe crab Limulus. Any realistic future theories for filopodium stability are likely to rely on an accurate treatment of such steric effects, as analysed in this work

    Hopping motion of lattice gases through nonsymmetric potentials under strong bias conditions

    Full text link
    The hopping motion of lattice gases through potentials without mirror-reflection symmetry is investigated under various bias conditions. The model of 2 particles on a ring with 4 sites is solved explicitly; the resulting current in a sawtooth potential is discussed. The current of lattice gases in extended systems consisting of periodic repetitions of segments with sawtooth potentials is studied for different concentrations and values of the bias. Rectification effects are observed, similar to the single-particle case. A mean-field approximation for the current in the case of strong bias acting against the highest barriers in the system is made and compared with numerical simulations. The particle-vacancy symmetry of the model is discussed.Comment: 8 pages (incl. 6 eps figures); RevTeX 3.

    Breaking of general rotational symmetries by multi-dimensional classical ratchets

    Full text link
    We demonstrate that a particle driven by a set of spatially uncorrelated, independent colored noise forces in a bounded, multidimensional potential exhibits rotations that are independent of the initial conditions. We calculate the particle currents in terms of the noise statistics and the potential asymmetries by deriving an n-dimensional Fokker-Planck equation in the small correlation time limit. We analyze a variety of flow patterns for various potential structures, generating various combinations of laminar and rotational flows.Comment: Accepted, Physical Review

    Controlled transport of solitons and bubbles using external perturbations

    Full text link
    We investigate generalized soliton-bearing systems in the presence of external perturbations. We show the possibility of the transport of solitons using external waves, provided the waveform and its velocity satisfy certain conditions. We also investigate the stabilization and transport of bubbles using external perturbations in 3D-systems. We also present the results of real experiments with laser-induced vapor bubbles in liquids.Comment: 26 pages, 24 figure

    Multiple current reversals in forced inhomogeneous ratchets

    Get PDF
    Transport properties of overdamped Brownian paricles in a rocked thermal ratchet with space dependent friction coefficient is studied. By tuning the parameters, the direction of current exhibit multiple reversals, both as a function of the thermal noise strength as well as the amplitude of rocking force. Current reversals also occur under deterministic conditions and exhibits intriguing structure. All these features arise due to mutual interplay between potential asymmetry,noise, driving frequency and inhomogeneous friction.Comment: 6 figure
    corecore