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Energetics of rocked inhomogeneous ratchets

Debasis Dan and A. M. Jayannavar

Institute of Physics, Sachivalaya Marg, Bhubaneswar 751005, India

We study the efficiency of frictional thermal ratchets driven by finite frequency driving

force and in contact with a heat bath. The efficiency exhibits varied behavior with driving frequency.

Both nonmonotonic and monotonic behavior have been observed. In particular the magnitude of

efficiency in finite frequency regime may be more than the efficiency in the adiabatic regime. This

is our central result for rocked ratchets. We also show that for the simple potential we have chosen,

the presence of only spatial asymmetry (homogeneous system) or only frictional ratchet (symmetric

potential profile), the adiabatic efficiency is always more than in the nonadiabatic case.
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Much has been studied in ratchet models (Brownian motors) to determine how directed mo-

tion appears out of nonequilibrium fluctuations in the absence of any net macroscopic force. Here

athermal fluctuation combined with spatial or temporal anisotropy conspire to generate systematic

motion even in the absence of net bias [1]. These studies have been inspired by the observations

on molecular motors in biological systems [2]. To this effect several physical models have been pro-

posed under the name of rocking ratchets, flashing ratchets, diffusion ratchets, correlation ratchets,

frictional ratchets [1] etc. In most of these systems, focus was mainly on the behavior of probability

current with change in system parameter like temperature, amplitude of external force, correlation

time, etc. The efficiency with which these ratchets convert fluctuation to useful work is a subject

of much recent interest [3,4]. New questions regarding the nature of heat engines (reversible or

irreversible) at molecular scales are being investigated. Especially the source of irreversibility and

whether the irreversibility can be suppressed such that efficiency can approach that of Carnot cycle

[2,5] and generalization of thermodynamics principles to nonequilibrium steady state are being inves-

tigated [6]. We use the method of stochastic energetics developed by Sekimoto [3]. In this scheme,

quantities like heat, work done and input energy can be calculated within the framework of Langevin

equation. Using this approach efficiency has been studied mainly as a function of temperature and

load in rocking, oscillating and frictional ratchets. In some cases it has been shown that efficiency

can be maximized at finite temperature [4,7]. The efficiency in these systems are rather small, the

reason being inherent irreversibility of these engines due to finite current.

In our present work we mainly explore the nature of efficiency in frictional rocking ratchets as

function of frequency of external drive. The systematic study of efficiency as a function of frequency

in rocked ratchets has not been studied so far. We show in the following that a rocking ratchet with

inhomogeneous friction coefficient can have efficiency which is a nonmonotonic function of frequency.

In some parameter range, the efficiency in the nonadiabatic regime can even be larger than
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in the adiabatic regime. This is solely due to the interplay between the asymmetry in the potential

and the space dependent friction coefficient. In absence of frictional inhomogeneity our system

reduces to a conventional rocked ratchet. It may also happen that inspite of this nonmonotonic

behavior with frequency the adiabatic efficiency is larger than the nonadiabatic efficiency. This shows

that in the nonequilibrium regime efficiency exhibits complex behavior some which are against the

established tenets of equilibrium phenomena, like efficiency in quasi-static processes is maximum. It

is difficult to find any systematic principle or procedure that can optimize the efficiency.

Transport properties in overdamped inhomogeneous systems have been dealt with great detail

previously [8–10]. Occurrence of multiple current reversals [11], current reversal under adiabatic or

deterministic conditions, unidirectional motion in the absence of potential [10], stochastic resonance

in the absence of periodic forcing have also been observed [12]. Most of these phenomena arise solely

due to the presence of frictional inhomogeneity. It is to be noted that systems with space dependent

friction are not uncommon. Brownian motion in confined geometries show space dependent friction.

Particles diffusing close to surface have space dependent friction coefficient [11]. It is also believed

that molecular motors move close along the periodic structure of microtubules and will therefore

experience a position dependent mobility [10]. Frictional inhomogeneities are common in super

lattice structures and semiconductor systems [8].

We consider an overdamped Brownian particle moving in an inhomogeneous 1D ratchet like

potential, rocked by a finite frequency driving force. We consider an asymmetric potential of the

form V (x) = −1/(2π)(sin(2πx)+µ/4 sin(4πx))+Lx, where L is the external load against which the

Brownian particle moves on average. µ is the asymmetry parameter and is in between the range 0

and 1. The direction of load is chosen against the mean drift of the Brownian particle so that the

work done by the particle is positive. The system is rocked by a zero mean external force of the

form F (t) = A sin(ωt). The correct Langevin equation for such a motion has been derived using

3



microscopic treatment of system bath coupling [9,13].

ẋ = −
(V ′(x) − F (t))

η(x)
− kBT

η′(x)

(η(x))2
+

√

kBT

η(x)
ξ(t), (1)

The quantity x represents the spatial position of the system. It should be noted that the above

equation involves a multiplicative noise with an additional temperature dependent drift term which

turns out to be essential for the system to approach correct thermal equilibrium state in absence

of external drive F (t) and load L [9,13]. The Gaussian white noise ξ(t) is delta correlated with

mean zero, i.e., < ξ(t)ξ(t′) >= 2Dδ(t − t′). The friction coefficient η(x) = η0(1 − λ sin(2πx + φ)),

|λ| < 1 and φ determines the relative phase shift between friction coefficient and potential. The

Fokker Planck equation corresponding to eqn. ( 1) is given by [14]

∂P (x, t)

∂t
= −

∂J(x, t)

∂x
=

∂

∂x

1

η(x)
[kBT

∂

∂x
+ (V ′(x) − F (t))]P (x, t), (2)

where J(x, t) and P (x, t) are the current density and probability density respectively. The mean

current

J = lim
t→∞

1

τ

∫

t+τ

t

dt
∫

1

0

J(x, t)dx, (3)

which is obtained numerically by solving eqn. (2) by the method of finite difference. The

work done against the load, given by W = LJ . The average input energy E is given by

E = limt→∞

1

τ

∫

t+τ

t
dt

∫

1

0
F (t)J(x, t)dx. The efficiency of the system to transform the external force

to useful work (storing potential energy) is [4]

η =
W

E
=

LJ

limt→∞

1

τ

∫

t+τ

t
dt

∫

1

0
F (t)J(x, t)dx

, (4)

where J is calculated from eqn. (3).

We now discuss the effect of finite frequency drive, spatial asymmetry and inhomogeneous

friction coefficient on the efficiency of energy transduction. It is observed that spatial asymmetry or

space dependent friction coefficient alone cannot enhance the nonadiabatic efficiency as compared
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to the adiabatic one in a rocked thermal ratchet. However, the interplay of both can enhance the

efficiency in the nonadiabatic regime.

First we discuss the nature of efficiency in an asymmetric ratchet in the absence of spatial

frictional inhomogeneity (λ = 0, µ = 1). This ratchet in contact with thermal bath produces directed

motion when rocked by a finite force. The direction of current being dependent both on the direction

of asymmetry as well as the frequency of the driving force [15]. When rocked adiabatically, the

current shows maxima at some nonzero value of temperature. Even though the current shows a

maxima the efficiency monotonically decreases with temperature [4,7]. The situation changes in

the nonadiabatic regime as shown in the fig. 1. Throughout this work temperature and frequency

have been scaled appropriately to make them dimensionless [14]. In fig. 1 we have plotted η vs T for

various values of ω. It can be seen that unlike the adiabatic case, η shows a maxima at a nonzero

value of temperature. The value at which η peaks, decreases with decreasing frequency, as it should

be. We have observed that even though the efficiency peaks at nonzero value of temperature in

the nonadiabatic regime, efficiency in the adiabatic regime (at T = 0)is much larger than the peak

nonadiabatic efficiency.

In fig. 2 we have plotted efficiency as function of rocking frequency for various values of T

(and A, in the inset). Current reversal as function of frequency is a common phenomena in a driven

asymmetric ratchet. Since beyond a critical frequency, the current reverses its direction [15], the

load has been applied in the opposite direction in that regime so that work is done against the load.

As shown in the fig. 2, for low frequencies, efficiency shows a monotonic decrease with frequency.

The rate of decrease of η with ω being critically dependent on temperature T and amplitude A. In

the current reversed regime, the efficiency shows a maxima with ω, though its value is much less

than the adiabatic efficiency. We have verified this fact by exhaustive numerical work with our given

potential.
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We now consider a system in which friction is space dependent with a symmetric potential

profile. Unidirectional current results whenever φ 6= 0, π or 2π as discussed in ref. ( [7]). In these

models inversion symmetry is broken dynamically by space dependent friction. This system does

not exhibit current reversal with any of the variables like T, A or ω (in the absence of L) and hence

we keep the load fixed in one direction for comparison of efficiency. In fig. 3 we have plotted η vs

ω for A = 0.5, φ = 0.6π and L = −0.012. For all values of T, λ and φ, the efficiency monotonically

decreases with ω, i.e., for a given T the adiabatic efficiency is always maximum. In the two cases

considered above (λ = 0 with asymmetric potential and λ 6= 0 with symmetric potential ) adiabatic

current is always more than the absolute value of the peak current in the nonadiabatic regime. The

efficiency in our present case is mainly determined by the nature of currents and hence the result

follows.

We now concentrate on frictional ratchets with asymmetric potential profile (λ 6= 0, µ 6= 0).

The efficiency characteristics of these ratchets have many novel and counterintuitive features. In

fig. 4 we plot efficiency as function of ω for two values of forcing amplitude A with T = 0.08, λ =

0.9, φ = 0.2π and L = 0.015. It can be clearly seen that the nonadiabatic efficiency is higher

than the adiabatic efficiency, which is contrary to common belief that a rocked Brownian ratchet is

inefficient in the nonadiabatic domain. This enhanced efficiency basically results from the increase

in the current with increase of frequency in current reversed regime. The increase of current in this

regime can be ascribed due to mutual interplay of spatial asymmetry and space dependent friction

coefficient [7]. The phase difference φ is chosen in such a manner so that the steeper side has lower

friction coefficient than the slanted side. The inset shows a different qualitative behavior of η with

increase of ω. Here A = 1.5, T = 0.4, λ = 0.1, φ = 0.2π and L = −0.001. In this parameter regime

there is no current reversal. Here as we increase frequency from adiabatic regime, η increases till it

exhibits a maxima at very high frequency and decreases on further increasing the frequency.At high
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T and in the adiabatic regime, particles get sufficient kicks and enough time to cross the barrier on

both the side, but the frictional drag on the steeper side is less. Hence the current flow is in the

negative direction. On increasing the frequency, the Brownian particles get less time to cross the

right barrier as it has to travel larger distance to reach the basin of attraction of the next well than

from the left side. Hence the net current increases. From the above argument it can be easily seen

that the efficiency increases with increasing asymmetry (increasing µ) and vice-versa which we have

checked in our work. For too high frequencies the particles do not get sufficient time to cross either

of the barriers and the current decreases which reflects in the decrease of efficiency as shown in the

fig. 4. Hence efficiency optimization at high frequency is not only a phenomenon in current reversed

regime but other wise also. On decreasing temperature the asymmetric ratchet effect becomes more

pronounced and efficiency increases along with the shift of the peak efficiency to lower frequency

regime.

Like other previous cases depending on the parameter values the efficiency ( as a function

of T ) may or may not be maximized at finite temperature [4,7]. This optimum value (if maxima

exists) increases initially with increasing frequency and then for too high frequencies it decreases as

discussed earlier. The temperature at which η peaks increases with increasing frequency as shown

in the fig. 5. This shows that unlike conventional wisdom where we associate high driving frequency

and temperature with inefficient energy conversion, here both high frequency (nonadiabatic regime)

and temperature enhances efficiency.

In conclusion we have studied the efficiency of energy transduction in a forced frictional

ratchet as function of rocking frequency. Both nonmonotonic and monotonic behavior have been

observed. In particular the magnitude of efficiency in finite frequency regime may be more than

the efficiency in the adiabatic regime. This implies that in these rocked ratchet systems quasi-static

operation may not be efficient for conversion of input energy into mechanical work. Observation of

7



peak in the efficiency as function of system parameters can be qualitatively attributed to the peak

in the current and not to the behavior of input energy, though the occurrence of peak in current

may not guarantee a peak in efficiency as observed earlier [4,7]. Here we have taken a simple

ratchet type potential with space dependent friction coefficient to illustrate the above results. We

do not rule out the fact that similar result can also be obtained in homogeneous systems for different

ratchet potentials provided they exhibit larger absolute peak current in the nonadiabatic regime. It

is interesting to explore this possibility. It should be noted that in flashing ratchets unlike rocking

ratchets, efficiency can show peaking behaviour as a function of frequency. This is because both in

zero frequency and in high frequency limit flashing ratchet does not exhibit current [2]. Detailed

study of input energy, work done and dependence of efficiency on other system parameters will be

reported in future.
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FIG. 2. Efficiency vs ω for two values T at A = 0.5, µ = 1.0, λ = 0.0 and |L| = 0.005. The inset

shows variation of η with ω for two values of A at T = 0.1, all other parameter values remaining

same.
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FIG. 5. Efficiency vs temperature for different values of ω. Here µ = 1, λ = 0.9, A = 0.5, φ = 0.2π

and L = −0.001
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