152 research outputs found
Raw starch degrading amylase production by mixed culture of Aspergillus niger and Saccharomyces cerevisae grown on sorghum pomace
Production of raw starch degrading amylase by a mixed culture of Aspergillus niger and Saccharomyces cerevisae grown on sorghum pomace as nutrient source was investigated. Effect of mineral nutrient supplementation of sorghum pomace on raw starch degrading amylase activity was also determined. Sorghum pomace medium significantly (
The behaviour of metal contaminants in silty sand and gravel
An investigative study is reported to determine the behaviour of metal contaminants in silty sand and gravel. A soil box experiment was conducted with a silty sand of permeability, k =
3.9242x10-5 m/s. The sand was placed on a bedding of 6 mm peagravel, inside the test box. Copper Nitrate, Chromium Nitrate, Nickel Sulphate and Lead Nitrate were dissolved, mixed with RO (reverse
osmosis) water for use in four separate experiments. Column tests were conducted with the same silty sand and gravel and under similar experimental conditions. Copper flushing was very slow, it was
strongly absorbed to the silty sand and gravel. Chromium was entirely retained (34mg/Kg) within the experimental system, and its released concentrations were very low. Nickel was shown to have a good aqueous solubility thus it was freely mobile in the sand. There was some minor adsorption of Nickel though lower than that of Copper and Chromium
A study protocol testing pre-exposure dose and compound pre-exposure on the mechanisms of latent inhibition of dental fear
Background: Dental stimuli can evoke fear after being paired - or conditioned - with aversive outcomes (e.g., pain). Pre-exposing the stimuli before conditioning can impair dental fear learning via a phenomenon known as latent inhibition. Theory suggests changes in expected relevance and attention are two mechanisms responsible for latent inhibition. In the proposed research, we test whether pre-exposure dose and degree of pre-exposure novelty potentiate changes in expected relevance and attention to a pre-exposed stimulus. We also assess if the manipulations alter latent inhibition and explore the possible moderating role of individual differences in pain sensitivity.
Methods: Participants will be healthy individuals across a wide range of ages (6 to 35 years), from two study sites. Participants will undergo pre-exposure and conditioning followed by both a short-term and long-term test of learning, all in a novel virtual reality environment. The unconditioned stimulus will be a brief pressurized puff of air to a maxillary anterior tooth. Pre-exposure dose (low vs. high) and pre-exposure novelty (element stimulus vs. compound stimuli) will be between-subject factors, with stimulus type (pre-exposed to-be conditioned stimulus, a non-pre-exposed conditioned stimulus, and an unpaired control stimulus) and trial as within-subject factors. Pain sensitivity will be measured through self-report and a cold pressor test. It is hypothesized that a larger dose of pre-exposure and compound pre-exposure will potentiate the engagement of the target mechanisms and thereby result in greater latent inhibition in the form of reduced fear learning. Further, it is hypothesized that larger effects will be observed in participants with greater baseline pain sensitivity.
Discussion: The proposed study will test whether pre-exposure dose and compound stimulus presentation change expected relevance and attention to the pre-exposed stimulus, and thereby enhance latent inhibition of dental fear. If found, the results will add to our theoretical understanding of the latent inhibition of dental fear and inform future interventions for dental phobia prevention
Optical-phonon resonances with saddle-point excitons in twisted-bilayer graphene
Twisted-bilayer graphene (tBLG) exhibits van Hove singularities in the
density of states that can be tuned by changing the twisting angle . A
-defined tBLG has been produced and characterized with optical
reflectivity and resonance Raman scattering. The -engineered optical
response is shown to be consistent with persistent saddle-point excitons.
Separate resonances with Stokes and anti-Stokes Raman scattering components can
be achieved due to the sharpness of the two-dimensional saddle-point excitons,
similar to what has been previously observed for one-dimensional carbon
nanotubes. The excitation power dependence for the Stokes and anti-Stokes
emissions indicate that the two processes are correlated and that they share
the same phonon.Comment: 5 pages, 6 figure
Genetic gains in grain yield of a maize population improved through marker assisted recurrent selection under stress and non-stress conditions in west Africa
Open Access JournakMarker-assisted recurrent selection (MARS) is a breeding method used to accumulate favorable alleles that for example confer tolerance to drought in inbred lines from several genomic regions within a single population. A bi-parental cross formed from two parents that combine resistance to Striga hermonthica with drought tolerance, which was improved through MARS, was used to assess changes in the frequency of favorable alleles and its impact on inbred line improvement. A total of 200 testcrosses of randomly selected S1 lines derived from the original (C0) and advanced selection cycles of this bi-parental population, were evaluated under drought stress (DS) and well-watered (WW) conditions at Ikenne and under artificial Striga infestation at Abuja and Mokwa in Nigeria in 2014 and 2015. Also, 60 randomly selected S1 lines each derived from the four cycles (C0, C1, C2, C3) were genotyped with 233 SNP markers using KASP assay. The results showed that the frequency of favorable alleles increased with MARS in the bi-parental population with none of the markers showing fixation. The gain in grain yield was not significant under DS condition due to the combined effect of DS and armyworm infestation in 2015. Because the parents used for developing the bi-parental cross combined tolerance to drought with resistance to Striga, improvement in grain yield under DS did not result in undesirable changes in resistance to the parasite in the bi-parental maize population improved through MARS. MARS increased the mean number of combinations of favorable alleles in S1 lines from 114 in C0 to 124 in C3. The level of heterozygosity decreased by 15%, while homozygosity increased by 13% due to the loss of some genotypes in the population. This study demonstrated the effectiveness of MARS in increasing the frequency of favorable alleles for tolerance to drought without disrupting the level of resistance to Striga in a bi-parental population targeted as a source of improved maize inbred lines
Muon Collider
Both e+e- and {\mu}+{\mu}- colliders have been proposed as possible
candidates for a lepton collider to complement and extend the reach of the
Large Hadron Collider (LHC) at CERN. The physics program that could be pursued
by a new lepton collider (e+e- or {\mu}+{\mu}-) with sufficient luminosity
would include understanding the mechanism behind mass generation and
electroweak symmetry breaking; searching for, and possibly discovering,
supersymmetric particles; and hunting for signs of extra spacetime dimensions
and quantum gravity. However, the appropriate energy reach for such a collider
is currently unknown, and will only be determined following initial physics
results at the LHC. It is entirely possible that such results will indicate
that a lepton collider with a collision energy well in excess of 1 TeV will be
required to illuminate the physics uncovered at LHC. Such a requirement would
require consideration of muons as the lepton of choice for such a collider.Comment: v.2., 6 pp. To appear in the 2nd edition of the book Elementary
Particles, Landolt-Boernstein Series published by Springer. arXiv admin note:
text overlap with arXiv:physics/9901022 by other autho
Status of Muon Collider Research and Development and Future Plans
The status of the research on muon colliders is discussed and plans are
outlined for future theoretical and experimental studies. Besides continued
work on the parameters of a 3-4 and 0.5 TeV center-of-mass (CoM) energy
collider, many studies are now concentrating on a machine near 0.1 TeV (CoM)
that could be a factory for the s-channel production of Higgs particles. We
discuss the research on the various components in such muon colliders, starting
from the proton accelerator needed to generate pions from a heavy-Z target and
proceeding through the phase rotation and decay ()
channel, muon cooling, acceleration, storage in a collider ring and the
collider detector. We also present theoretical and experimental R & D plans for
the next several years that should lead to a better understanding of the design
and feasibility issues for all of the components. This report is an update of
the progress on the R & D since the Feasibility Study of Muon Colliders
presented at the Snowmass'96 Workshop [R. B. Palmer, A. Sessler and A.
Tollestrup, Proceedings of the 1996 DPF/DPB Summer Study on High-Energy Physics
(Stanford Linear Accelerator Center, Menlo Park, CA, 1997)].Comment: 95 pages, 75 figures. Submitted to Physical Review Special Topics,
Accelerators and Beam
Asteroseismology and Interferometry
Asteroseismology provides us with a unique opportunity to improve our
understanding of stellar structure and evolution. Recent developments,
including the first systematic studies of solar-like pulsators, have boosted
the impact of this field of research within Astrophysics and have led to a
significant increase in the size of the research community. In the present
paper we start by reviewing the basic observational and theoretical properties
of classical and solar-like pulsators and present results from some of the most
recent and outstanding studies of these stars. We centre our review on those
classes of pulsators for which interferometric studies are expected to provide
a significant input. We discuss current limitations to asteroseismic studies,
including difficulties in mode identification and in the accurate determination
of global parameters of pulsating stars, and, after a brief review of those
aspects of interferometry that are most relevant in this context, anticipate
how interferometric observations may contribute to overcome these limitations.
Moreover, we present results of recent pilot studies of pulsating stars
involving both asteroseismic and interferometric constraints and look into the
future, summarizing ongoing efforts concerning the development of future
instruments and satellite missions which are expected to have an impact in this
field of research.Comment: Version as published in The Astronomy and Astrophysics Review, Volume
14, Issue 3-4, pp. 217-36
- …