320 research outputs found
A two-dimensional mixing length theory of convective transport
The helioseismic observations of the internal rotation profile of the Sun
raise questions about the two-dimensional (2D) nature of the transport of
angular momentum in stars. Here we derive a convective prescription for
axisymmetric (2D) stellar evolution models. We describe the small scale motions
by a spectrum of unstable linear modes in a Boussinesq fluid. Our saturation
prescription makes use of the angular dependence of the linear dispersion
relation to estimate the anisotropy of convective velocities. We are then able
to provide closed form expressions for the thermal and angular momentum fluxes
with only one free parameter, the mixing length.
We illustrate our prescription for slow rotation, to first order in the
rotation rate. In this limit, the thermodynamical variables are spherically
symetric, while the angular momentum depends both on radius and latitude. We
obtain a closed set of equations for stellar evolution, with a self-consistent
description for the transport of angular momentum in convective regions. We
derive the linear coefficients which link the angular momentum flux to the
rotation rate (- effect) and its gradient (-effect). We
compare our results to former relevant numerical work.Comment: MNRAS accepted, 10 pages, 1 figure, version prior to language editio
Seismic tests for solar models with tachocline mixing
We have computed accurate 1-D solar models including both a macroscopic
mixing process in the solar tachocline as well as up-to-date microscopic
physical ingredients. Using sound speed and density profiles inferred through
primary inversion of the solar oscillation frequencies coupled with the
equation of thermal equilibrium, we have extracted the temperature and hydrogen
abundance profiles. These inferred quantities place strong constraints on our
theoretical models in terms of the extent and strength of our macroscopic
mixing, on the photospheric heavy elements abundance, on the nuclear reaction
rates such as and and on the efficiency of the microscopic
diffusion. We find a good overall agreement between the seismic Sun and our
models if we introduce a macroscopic mixing in the tachocline and allow for
variation within their uncertainties of the main physical ingredients. From our
study we deduce that the solar hydrogen abundance at the solar age is and that based on the Be photospheric depletion, the
maximum extent of mixing in the tachocline is 5% of the solar radius. The
nuclear reaction rate for the fundamental reaction is found to be
MeV barns, i.e., 1.5% higher than the
present theoretical determination. The predicted solar neutrino fluxes are
discussed in the light of the new SNO/SuperKamiokande results.Comment: 16 pages, 12 figures, A&A in press (1) JILA, University of Colorado,
Boulder, CO 80309-0440, USA, (2) LUTH, Observatoire de Paris-Meudon, 92195
Meudon, France, (3) Tata Institute of Fundamental Research, Homi Bhabha road,
Mumbai 400005, India, (4) Department of Physics, University of Mumbai, Mumbai
400098, Indi
Solar rotation rate and its gradients during cycle 23
Available helioseismic data now span almost the entire solar activity cycle
23 making it possible to study solar-cycle related changes of the solar
rotation rate in detail. In this paper we study how the solar rotation rate, in
particular, the zonal flows change with time. In addition to the zonal flows
that show a well known pattern in the solar convection zone, we also study
changes in the radial and latitudinal gradients of the rotation rate,
particularly in the shear layer that is present in the immediate sub-surface
layers of the Sun. In the case of the zonal-flow pattern, we find that the band
indicating fast rotating region close to the equator seems to have bifurcated
around 2005. Our investigation of the rotation-rate gradients show that the
relative variation in the rotation-rate gradients is about 20% or more of their
average values, which is much larger than the relative variation in the
rotation rate itself. These results can be used to test predictions of various
solar dynamo models.Comment: To appear in ApJ. Fig 5 has been corrected in this versio
Genome-wide association study in two cohorts from a multi-generational mouse advanced intercross line highlights the difficulty of replication due to study-specific heterogeneity
There has been extensive discussion of the Replication Crisis in many fields, including genome-wide association studies
Is the solar convection zone in strict thermal wind balance?
Context: The solar rotation profile is conical rather than cylindrical as one
could expect from classical rotating fluid dynamics (e.g. Taylor-Proudman
theorem). Thermal coupling to the tachocline, baroclinic effects and
latitudinal transport of heat have been advocated to explain this peculiar
state of rotation. Aims: To test the validity of thermal wind balance in the
solar convection zone using helioseismic inversions for both the angular
velocity and fluctuations in entropy and temperature. Methods: Entropy and
temperature fluctuations obtained from 3-D hydrodynamical numerical simulations
of the solar convection zone are compared with solar profiles obtained from
helioseismic inversions. Results: The temperature and entropy fluctuations in
3-D numerical simulations have smaller amplitude in the bulk of the solar
convection zone than those found from seismic inversions. Seismic inversion
find variations of temperature from about 1 K at the surface up to 100 K at the
base of the convection zone while in 3-D simulations they are of order 10 K
throughout the convection zone up to 0.96 . In 3-D simulations,
baroclinic effects are found to be important to tilt the isocontours of
away from a cylindrical profile in most of the convection zone helped
by Reynolds and viscous stresses at some locations. By contrast the baroclinic
effect inverted by helioseismology are much larger than what is required to
yield the observed angular velocity profile. Conclusion: The solar convection
does not appear to be in strict thermal wind balance, Reynolds stresses must
play a dominant role in setting not only the equatorial acceleration but also
the observed conical angular velocity profile.Comment: 8 pages, 6 figures (low resolution), Accepted by Astronomy and
Astrophysics - Affiliation: (1) AIM, CEA/DSM-CNRS-Univ. Paris Diderot,
IRFU/SAp, France & (2) LUTH, Observatoire de Paris, CNRS-Univ. Paris Diderot,
France ; (3) Tata Institute of Fundamental Research, India; (4) Centre for
Basic Sciences, University of Mumbai, Indi
- …