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MULTIPARENTAL POPULATIONS
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ABSTRACT There has been extensive discussion of the “Replication Crisis” in many fields, including genome-
wide association studies (GWAS). We explored replication in a mouse model using an advanced intercross line
(AIL), which is a multigenerational intercross between two inbred strains. We re-genotyped a previously published
cohort of LG/J x SM/J AIL mice (F34; n = 428) using a denser marker set and genotyped a new cohort of AIL mice
(F39-43; n = 600) for the first time. We identified 36 novel genome-wide significant loci in the F34 and 25 novel loci
in the F39-43 cohort. The subset of traits that were measured in both cohorts (locomotor activity, body weight, and
coat color) showed high genetic correlations, although the SNP heritabilities were slightly lower in the F39-43
cohort. For this subset of traits, we attempted to replicate loci identified in either F34 or F39-43 in the other cohort.
Coat color was robustly replicated; locomotor activity and body weight were only partially replicated, which was
inconsistent with our power simulations. We used a random effects model to show that the partial replications
could not be explained by Winner’s Curse but could be explained by study-specific heterogeneity. Despite this
heterogeneity, we performed a mega-analysis by combining F34 and F39-43 cohorts (n = 1,028), which identified
four novel loci associated with locomotor activity and body weight. These results illustrate that even with the high
degree of genetic and environmental control possible in our experimental system, replication was hindered by
study-specific heterogeneity, which has broad implications for ongoing concerns about reproducibility.
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Genome-wide association studies (GWAS) inmodel organisms can use
genetically identical cohorts phenotyped under extremely similar con-
ditions, which would be expected to enhance the success of replication.

We sought to investigate replication in model organismGWAS using a
mouse advanced intercross line (AIL). The use of GWAS in model
organisms such as mice (Talbot et al. 1999; Demarest et al. 2001;
Yalcin et al. 2004; Valdar et al. 2006; Ghazalpour et al. 2008;
Samocha et al. 2010; Churchill et al. 2012; Collaborative Cross Con-
sortium 2012; Parker et al. 2012, 2016; Svenson et al. 2012; Carbonetto
et al. 2014; Chesler 2014; Coyner et al. 2014; Gatti et al. 2014; Nicod
et al. 2016; Hernandez Cordero et al. 2018, 2019), rats (Baud et al.
2014), chickens (Besnier et al. 2011; Johnsson et al. 2018), fruit flies
(King et al. 2012; Mackay et al. 2012; Kislukhin et al. 2013; Marriage
et al. 2014; Vonesch et al. 2016), C. elegans (Doitsidou et al. 2016) and
various plant species (Rishmawi et al. 2017; Cockram and Mackay
2018; Diouf et al. 2018) has become increasingly common over the last
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decade. These mapping populations can further be categorized as
multi-parental crosses, which are created by interbreeding two or
more inbred strains, and various outbred populations, in which the
founders are of unknown provenance. An F2 cross between two
inbred strains is the prototypical mapping population; however,
F2s provide poor mapping resolution (Parker and Palmer 2011).
To improve mapping resolution, Darvasi and Soller (Darvasi and
Soller 1995) proposed the creation of advanced intercross lines
(AILs), which are produced by intercrossing F2 mice for additional
generations. AILs accumulate additional crossovers with every suc-
cessive generation, leading to a population with shorter linkage
disequilibrium (LD) blocks, which improves mapping precision,
albeit at the expense of power (Parker and Palmer 2011; Gonzales
and Palmer 2014).

The longest runningmouse AILwas generated by crossing LG/J and
SM/J inbred strains, which had been previously selected for large and
small body size prior to inbreeding and subsequent intercrossing. We
obtained this AIL in 2006 at generation 33 from Dr. James Cheverud
(Jmc: LG,SM-G33). Since then, we have collected genotype and pheno-
type information from multiple generations, including F34 (Cheng
et al. 2010; Lionikas et al. 2010; Samocha et al. 2010; Parker et al.
2011, 2014; Bartnikas et al. 2012; Carroll et al. 2017; Gonzales et al.
2018) and F39-F43. Our previous publications using the F34 genera-
tion employed a custom Illumina Infinium genotyping microarray
to obtain genotypes for 4,593 SNPs (Cheng et al. 2010; Parker et al.
2014); we refer to this set of SNPs as the ‘sparse markers’. Those
genotypes were used to identify significant associations for numer-
ous traits, including locomotor activity in response to methamphet-
amine (Cheng et al. 2010), pre-pulse inhibition (Samocha et al.
2010), muscle weight (Lionikas et al. 2010; Hernandez Cordero
et al. 2019), body weight (Parker et al. 2011), open field (Parker
et al. 2014), conditioned fear (Parker et al. 2014), red blood cell
parameters (Bartnikas et al. 2012), and muscle weights (Carroll
et al. 2017). Although not previously published, we also collected
phenotype information from the F39-43 generations, including body
weight, fear conditioning, locomotor activity in response to meth-
amphetamine, and the light dark test for anxiety.

While the prior GWAS using the F34 generation detected many
significant loci, the sparsity of the markers likely precluded the discov-
ery of some true loci and also made it difficult to clearly define the
boundaries of the loci that we did identify. For example, Parker et al.
conducted an integrated analysis of F2 and F34 AILs (Parker et al. 2011).
One of their body weight loci spanned from 87.93–102.70 Mb on
chromosome 14. Denser markers might have more clearly defined
the implicated region.

In the present study, we used genotyping-by-sequencing (GBS),
which is a reduced-representation sequencing method (Davey et al.
2011; Elshire et al. 2011; Fitzpatrick et al. 2013), to obtain a much
denser set of SNPs in the F34 cohort and, for the first time, genotyped
mice from the F39-43 generations. With this denser set of SNPs, we
attempted to identify novel loci in the F34 cohort that were not detected
using the sparse SNPs. We also performed GWAS using the mice from
the F39-43 AILs. We explored whether imputation from the array SNPs
could have provided the additional coverage we obtained using the
denser GBS genotypes. Because F39-43 AILs are the direct descendants
of the F34, they are uniquely suited to serve as a replication population
for GWAS in the F34 generation. For the subset of traits measured in
both cohorts, we attempted to replicate the results discovered in one
cohort in the other. To set our expectations for replication, we per-
formed simulations to estimate the power for these replication studies.
Because the actual rate of replication was lower than predicted by the

power analysis, we used a random effects model to evaluate the role
of Winner’s Curse and study-specific heterogeneity in the low rate of
replication. Finally, we also performed a mega-analysis on a subset of
traits common to both cohorts.

MATERIALS AND METHODS

Animals
Allmiceused in this studyweremembersof theLG/JxSM/JAIL thatwas
originally created by Dr. James Cheverud (Loyola University Chicago,
Chicago, IL). This AIL has been maintained in the Palmer laboratory
since generation F33. Age and exact number of animals tested in each
phenotype are described in Table S1. Several previous publications
(Samocha et al. 2010; Cheng et al. 2010; Parker et al. 2014; Lionikas
et al. 2010; Carroll et al. 2017; Parker et al. 2011; Bartnikas et al. 2012)
have reported association analyses of the F34 mice (n = 428). No prior
publications have described the F39-43 generations (n = 600). The sam-
ple size of F34 mice reported in this study (n = 428) is smaller than that
in previous publications of F34 (n = 688) because we only genotyped a
subset of F34 animals using GBS.

F34, F39-43 Phenotypes
All phenotypes are listed in Table S1. We have previously described the
phenotyping of F34 animals for locomotor activity and locomotor re-
sponse to methamphetamine (Cheng et al. 2010), fear conditioning
(Parker et al. 2014), open field (Parker et al. 2014), coat color, body
weight (Parker et al. 2011), complete blood counts (Bartnikas et al.
2012), heart and tibia measurements (Lionikas et al. 2010), muscle
weight (Lionikas et al. 2010). Iron content in liver and spleen, which
have not been previously reported in these mice, was measured by
atomic absorption spectrophotometry, as described in Gardenghi
et al. (Gardenghi et al. 2007) and Graziano, Grady and Cerami
(Graziano et al. 1974). Although the phenotyping of F39-43 animals
has not been previously reported, we followed previously published
protocols for locomotor activity and locomotor response to metham-
phetamine (Cheng et al. 2010), coat color, body weight (Parker et al.
2011), and light/dark test for anxiety (Sittig et al. 2016). We point out
here that even though “locomotor activity” was measured in both the
F34 and F39-43 using the Versamax software (AccuScan Instruments,
Columbus, OH), “open field” in the F34 cohort was alsomeasured using
Versamax, whereas “open field” in the F39-43 cohort was measured
using the EthoVision XT software (Noldus system; (Noldus et al.
2001)). Because there are meaningful differences in these experimental
procedures, we did not attempt to use “open field” data for replication.
In summary, we performed GWAS on all traits collected in individual
cohorts. For the replication analysis between the F34 and F39-43 cohorts,
we only directly compared a number of traits that had been measured
in both cohorts: body weight, two Mendelian coat color traits (albino
and agouti), and three locomotor activity traits (locomotor activity on
day 1 and on day 2, and activity on day 3 following amethamphetamine
injection).

F34 AIL Array Genotypes
F34 animals had been genotyped on a customSNP array on the Illumina
Infinium platform (Cheng et al. 2010; Parker et al. 2014), which yielded
a set of 4,593 SNPs on autosomes andX chromosome that we refer to as
‘sparse SNPs’.

F34 and F39-43 GBS Genotypes
F34 and F39-43 animals were genotyped using genotyping-by-sequencing
(GBS), which is a reduced-representation genome sequencing
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method (Parker et al. 2016; Gonzales et al. 2017). We used the
same protocol for GBS library preparation that was described in
Gonzales et al. (Gonzales et al. 2017). We called GBS genotype
probabilities using ANGSD (Korneliussen et al. 2014). GBS iden-
tified 1,667,920 autosomal and 43,015 X-chromosome SNPs. To
fill in missing genotypes at SNPs where some but not all mice had
calls, we ran within-sample imputation using Beagle v4.1, which
generated hard call genotypes as well as genotype probabilities
(Browning and Browning 2007). After imputation, only SNPs that
had dosage r2 . 0.9 were retained. We removed SNPs with minor
allele frequency , 0.1 and SNPs with P , 1.0·1026 in the Chi-
square test of Hardy–Weinberg Equilibrium (HWE) (Table S2).
All phenotype and GBS genotype data are deposited in GeneNet-
work2 (http://gn2.genenetwork.org/).

QC of individuals
We have found that large genetic studies are often hampered by cross-
contamination between samples and sample mix-ups. We used four
features of the data to identify problematic samples: heterozygosity
distribution, proportion of reads aligned to sex chromosomes, pedigree/
kinship, and coat color. We first examined heterozygosity across auto-
somes and removedanimalswhere the proportionofheterozygositywas
more than 3 standard deviations from the mean (Figure S1). Next, we
sought to identify animals in which the recorded sex did not agree with
the sequencing data. We compared the ratio of reads mapped to the X
and Y chromosomes. The 95% CI for this ratio was 196.84 to 214.3 in
females and 2.13 to 2.18 in males. Twenty-two F34 and F39-43 animals
were removed because their sex (as determined by reads ratio) did not
agree with their recorded sex; we assumed this discrepancy was due to
sample mix-ups. To further identify mislabeled samples, we calculated
kinship coefficients based on the full AIL pedigree using QTLRel. We
then calculated a genetic relatedness matrix (GRM) using IBDLD
(Abney 2008; L. Han and Abney 2011), which estimates identity by
descent using genotype data. The comparison between pedigree kinship
relatedness and genetic kinship relatedness identified seven pairs of
animals that showed obvious disagreement between kinship coeffi-
cients and the GRM, these animals were excluded from further analysis.
Lastly, we excluded 14 F39-43 animals that showed discordance between
their recorded coat color and their genotypes at markers flanking
Tyr, which causes albinism in mice. The numbers of animals filtered
at each step are listed in Table S2. Some animals were detected by
more than one QC step, substantiating our evidence that these
samples were erroneous.

At the end of SNP and sample filtering, we had 59,561 autosomal
and 831 X chromosome SNPs in F34, 58,966 autosomal and 824 X
chromosome SNPs in F39-43, and 57,635 autosomal and 826 X chro-
mosome SNPs in the combined F34 and F39-43 set (Table S2). GBS
genotype quality was estimated by examining concordance between
the 66 SNPs that were present in both the array and GBS genotyping
results (Figure S3).

LD decay
Average LD (r2) was calculated using allele frequency matched SNPs
(MAF difference , 0.05) within 100,000 bp distance, as described in
Parker et al. (Parker et al. 2016).

Imputation to LG/J and SM/J reference panels
F34 array genotypes (n = 428) and F34 GBS genotypes (n = 428) were
imputed to LG/J and SM/J whole genome sequence data (Nikolskiy
et al. 2015) using BEAGLE (Browning and Browning 2007). For F34
array imputation, we used a large window size (100,000 SNPs and

45,000 SNPs overlap). Imputation to reference panels yielded
4.3 million SNPs for F34 array and F34 GBS imputed sets. Imputed
SNPs with r2 . 0.9, MAF . 0.1, HWE p-value . 1.0·1026 were
retained, resulting in 4.1M imputed F34 GBS SNPs and 4.3M im-
puted F34 array SNPs.

Genome-wide association analysis (GWAS)
We used the linear mixed model, as implemented in GEMMA (Zhou
and Stephens 2012), to perform a GWAS that accounted for the com-
plex familial relationships among the AIL mice (Cheng et al. 2010;
Gonzales et al. 2017). We used the leave-one-chromosome-out
(LOCO) approach to calculate the GRM, which effectively circum-
vented the problem of proximal contamination (Cheng et al. 2013).
We used the univariate linear mixed model described in Zhou and
Stephens (Zhou and Stephens 2012):

y ¼Waþ xbþ uþ e; u � MVNn
�
0; lt21K

�
; e

� MVNn
�
0; t21In

�
;

where y is a n-vector of traits for n individuals;W is a n·c matrix of
covariates (fixed effects); a is a c-vector of the corresponding coeffi-
cients; x is an n-vector of genotypes; b is the effect size of the genotype;
u is an n-vector of random effects; e is an n-vector of errors; t21is the
variance of the residual errors; l is the ratio between the two variance
components; K is a known n · n relatedness matrix and In is an n · n
identity matrix.MVNn stands for the n-dimensional multivariate nor-
mal distribution (Zhou and Stephens 2012).

Separate GWAS were performed using the F34 array genotypes, the
F34 GBS genotypes, and the F39-43 GBS genotypes. Apart from coat
color (binary trait), raw phenotypes were quantile normalized prior
to analysis. Coat color traits were coded as follows: albino: 1 = white,
0 = non-white; agouti: 1 = tan, 0 = black, NA = white. Because F34 AIL
had already been studied, we used the same covariates as described in
Cheng et al. (Cheng et al. 2010) in order to examine whether our array
and GBS GWAS would replicate their findings. We included sex and
body weight as covariates for locomotor activity traits (see covariates
used in (Cheng et al. 2010)) and sex, age, and coat color as covariates for
fear conditioning and open field test in F34 AILs (see covariates used in
(Parker et al. 2014)). We used sex and age as covariates for all other
phenotypes. Covariates for each analysis are shown in Table S1. Finally,
we performed mega-analysis of F34 and F39-43 animals (n = 1,028) for
body weight, coat color, and locomotor activity, since these traits were
measured in the sameway in both cohorts.We quantile transformed all
continuous phenotypes in each cohort and then combined the trans-
formed phenotypes for the mega-analysis (coat color traits were not
quantile normalized because they are binary).

Identifying dubious SNPs
Some significant SNPs in the F34 GWAS were dubious because the
flanking SNPs, which would have been expected to be in high LD with
the significant SNP (a very strong assumption in an AIL), did not have
high -log10(p) values. We only examined SNPs that obtained signifi-
cant p-values; close examinations revealed that these SNPs had dubious
ratios of heterozygotes to homozygotes calls and had corresponding
HWE p-values that were close to our 1.0·1026 threshold (Table S3).
We chose the 1.0·1026 as the filter threshold of the HWE p-values
based on a gene-dropping exercise. We used the F33-34 family pedigree
and the F34 genetic map to simulate the genotypes in F34 (QTLRel;
(Cheng et al. 2011)). The p-value of the chi-square test for Hardy-
Weinberg equilibrium in the simulated F34 population was
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7.24329·10206, which was close to the HWE threshold used in
Gonzales et al. (Gonzales et al. 2018). To avoid counting these
as novel loci, we removed those SNPs prior to summarizing our
results as they likely reflected genotyping errors.

Selecting independent significant SNPs
To identify independent “lead loci” among significant GWAS SNPs
that surpassed the significance threshold, we used the LD-based
clumping method in PLINK v1.9. We empirically chose clumping
parameters (r2 = 0.1 and sliding window size = 12,150kb) that gave
us a conservative set of independent SNPs (Table S4). For the coat
color phenotypes, we found that multiple SNPs remained significant
even after LD-based clumping, presumably due to the extremely
significant associations at these Mendelian loci. In these cases, we
used a stepwise model selection procedure in GCTA (Yang et al.
2011) and performed association analyses conditioning on the most
significant SNPs.

Significance thresholds
We used MultiTrans to set significance thresholds for GWAS
(B. Han et al. 2009; Joo et al. 2016). MultiTrans is a method that
assumes multivariate normal distribution of the phenotypes, which
in LMM models, contain a covariance structure due to various
degrees of relatedness among individuals. We were curious to see
whether MultiTrans produced significance thresholds that were
different from the thresholds we obtained from a standard permu-
tation test (‘naïve permutation’ as per Cheng et al. (Cheng et al.
2013)). We performed 1,000 permutations using the F34 GBS ge-
notypes and the phenotypic data from locomotor activity (days 1, 2,
and 3). We found that the 95th percentile values for these permu-
tations were 4.65, 4.79, and 4.85, respectively, which were very
similar to 4.85, the threshold obtained from MultiTrans using the
same data. Thus, the thresholds presented here were obtained from
MultiTrans but are similar (if anything slightly more conservative)
to the thresholds we would have obtained had we used permuta-
tion. Because the effective number of tests depends on the number
of SNPs and the specific animals used in GWAS, we obtained a
unique adjusted significance threshold for each SNP set in each
animal cohort (Table S5).

Credible set analysis
We followed the method described in (Wellcome Trust Case Control
Consortium et al. 2012). Credible set analysis is a Bayesian method of
selecting an interval of SNPs that are likely to contain the causal SNPs;
we used LD r2 threshold = 0.8, posterior probability =0.99. The R script
could be found on GitHub: https://github.com/hailianghuang/FM-
summary/blob/master/getCredible.r

Power analysis
To estimate the power of replication of a SNP from the discovery set
in the replication set, we simulatedGWASwith 50 varying effect sizes
for the discovery SNP using the LMMmodel.We first fit the trait in a
null model (i.e., no genotype effect), and obtained estimates of
model parameters including the intercept and the genetic variance
component. Using these model parameters, we added the genotype
effect to the random numbers generated from the null model to
recreate a trait. For each simulated effect size, we scanned every
simulated trait 2,500 times and examined the ratio of association
tests whose test statistics surpassed the significance thresholds (both
the genome-wide significance threshold for the cohort and the nom-
inal p-value of 0.05).

Replication analysis between F34 and F39-43
GWAS studies
Wemodeled the replication between F34 andF39-43GWAS studies using
two random effects models (Zou et al. 2019). Both models take as
input a set of z-scores for variants computed from an association study
(“summary statistics”).

The WC model accounts only for Winner’s Curse. We assume
that there is a shared genetic effect (lÞ that is responsible for the
observed association signal in both studies. To model random noise
contributing to Winner’s Curse, we model the summary statistics
for each variant k from the discovery and replication studies as
normally distributed random variables (sð1Þk � Nðl; 1Þ and
sð2Þk � Nðl; 1Þ, respectively). We define the prior probability
of the true genetic effect to be l � Nð0; s2

gÞ, where the vari-
ance in the true genetic effect is learned through a maximum
likelihood procedure. We correct for the effect of Winner’s Curse
in the discovery study by computing the conditional distribution
of the replication summary statistic given the discovery summary
statistic.

The WC+C model accounts for Winner’s Curse and study-
specific heterogeneity. In this model, we partition the total effect
sizes observed into genetic effects (lÞ and study-specific effects (dð1Þ
and dð2Þ). We model the statistics for each variant k from the initial
and discovery studies as normally distributed random variables
(sð1Þk � Nðlþ dð1Þ; 1Þ and sð2Þk � Nðl þ dð2Þ; 1Þ, respec-
tively). In addition to the prior on the genetic effect defined in the
WC model, we define the prior probabilities of the study-specific
effects to be dð1Þ � Nð0; s2

c1Þ, and dð2Þ � Nð0; s2
c2Þ, where the var-

iance parameters are learned through a maximum likelihood pro-
cedure. We correct for the effect of Winner’s Curse in the discovery
study and study-specific effects by computing the conditional dis-
tribution of the replication summary statistic given the discovery
summary statistic.

We applied each of these models once using F34 as the discovery
study and once using F39-43 as the discovery study. We used the ge-
nome-wide significance thresholds in Table S5 to identify variants in
each discovery study and used the results as input to the random effects
models. We then used a Bonferroni corrected threshold (P = 0.05/M)
for the replication study, where M is the number of genome-wide
significant variants in the initial study. We computed the “empirical
replication rate” as the proportion of variants passing the genome-wide
significant threshold in the discovery study that also passed this Bon-
ferroni corrected threshold in the replication study. Since the estima-
tion of the model parameters requires at least two variants, we only
applied this method to phenotypes with at least two genome-wide
significant variants in the discovery study.

To assess how well the WC and WC+C models explained the
observed patterns of replication, we computed the predicted repli-
cation rates under each model. For each variant that passed the
genome-wide significant threshold in the discovery study, we used
the conditional distributions previously learned to compute the
probability that the variant passed the Bonferroni corrected thresh-
old in the replication study. For each phenotype, we computed the
average of these predicted replication rates and compared this av-
erage to the empirical replication rates.

Genetic correlation and heritability estimates between
F34 and F39-43 phenotypes
Locomotor activity, body weight, and coat color traits had been mea-
sured in both F34 and F39-43 populations. We calculated both SNP
heritability and genetic correlations between F34 and F39-43 animals
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using GCTA-GREML analysis and GCTA bivariate GREML analysis
(Yang et al. 2011).

LocusZoom Plots
LocusZoom plots were generated using the standalone implementation
of LocusZoom (Pruim et al. 2010), using LD scores calculated from
PLINK v.1.9–ld option and mm10 gene annotation file downloaded
from UCSC Genome Browser.

Data availability
All relevant data are within the paper and its Supporting Information
files. Genotypes and phenotypes of F34 (“LGSM AI G34 Palmer
(Array)”: GN655; “LGSM AI G34 Palmer (GBS)”: GN656), F39-43
(“LGSMAIG39-43 Palmer (GBS)”: GN657), andmega-analysis cohort
(“LGSM AI G34 G39-43 Palmer (GBS)”: GN654) of AIL are uploaded
to GeneNetwork2 (http://gn2.genenetwork.org/). Code used to per-
form the analyses is included in the supplementary materials on
figshare: https://doi.org/10.25387/g3.11674221.

RESULTS
We used 214 males and 214 females from generation F34 (Aap:LG,SM-
G34) and 305 males and 295 females from generations F39-43. For the
F34 AIL 79 traits were available from previous published and unpub-
lished work; for the F39-43 AIL 49 unpublished traits were available
(Table S1). F34 mice had been previously genotyped on a custom
SNP array (Cheng et al. 2010; Parker et al. 2014). The average minor
allele frequency (MAF) of those 4,593 array SNPs was 0.388 (Figure 1).
To obtain a denser set of SNP markers, we used GBS in F34 and F39-43
AIL mice. Since data on the F39-43 AIL mice had been collected over the
span of approximately two years, we carefully considered the possibility
of sample contamination and sample mislabeling (Toker et al. 2016)
and removed these samples (see Methods; Figure S1 and S2). The final
SNP sets included 60,392 GBS-derived SNPs in 428 F34 AIL mice,
59,790 GBS-derived SNPs in 600 F39-43 AIL mice, and 58,461 GBS-
derived SNPs that existed in both F34 and F39-43 AIL mice (Table S2).
The MAF for the GBS SNPs was 0.382 in F34, 0.358 in F39-43, and 0.370
in F34 and F39-43 (Figure 1). There were 66 SNPs called from our GBS
data that were also present on the genotyping array. The genotype
concordance rate for those 66 SNPs, which reflects the sum of errors
from both sets of genotypes, was 95.4% (Figure S3). We found that LD
decay rates using F34 array, F34 GBS, F39-43 GBS, and F34 and F39-43 GBS
genotypes were generally similar to one another, though levels of LD
using the GBS genotypes appear to be slightly reduced in the later
generations of AILs (Figure S4).

GBS genotypes produced more significant associations
than array genotypes in F34
We used a linear mixed model (LMM) as implemented in GEMMA
(Zhou and Stephens 2012) to perform GWAS. We used the leave-one-
chromosome-out (LOCO) approach to address the problem of proxi-
mal contamination, as previously described (Listgarten et al. 2012;
Cheng et al. 2013; Yang et al. 2014; Gonzales et al. 2017).We performed
GWAS using both the sparse array SNPs and the dense GBS SNPs to
determinewhether additional SNPs would producemore genome-wide
significant associations. Autosomal and X chromosome SNPs were
included in all GWAS. We obtained a significance threshold for each
SNP set using MultiTrans (B. Han et al. 2009; Joo et al. 2016).To select
independently associated loci (“lead loci”), we used an LD-based
clumping method implemented in PLINK to group SNPs that passed
the adjusted genome-wide significance thresholds over a large genomic
region flanking the index SNP (Purcell et al. 2007). Applying the most

stringent clumping parameters (r2 = 0.1 and sliding window size =
12,150kb, Table S4), we identified 109 significant lead loci in 49 out
of 79 F34 phenotypes using the GBS SNPs (Table S7). In contrast, we
identified 83 significant lead loci in 45 out of 79 F34 phenotypes using
the sparse array SNPs (Table S6, Table S7). Among the loci identified in
the F34, 36 were uniquely identified using the GBS genotypes, whereas
11 were uniquely identified using the array genotypes. These unique
loci could be explained by the disparity of the marker density between
the GBS and array genotypes. Some unique loci captured haplotype
blocks that were not picked up in the other SNP set. Other unique loci
were only slightly above the significance threshold in one SNP set where
the corresponding loci in the other SNP set had sub-threshold sig-
nificance (i.e., p-value �1025 but below the significance threshold
of the cohort; Table S7). Overall, GBS SNPs consistently yielded
more significant lead loci compared to array SNPs regardless of
the clumping parameter values (Table S4), indicating that a dense
marker panel was able to detect more association signals compared
to a sparse marker panel.

To determine the boundaries of each locus, we performed a
Bayesian-framework credible set analysis, which estimated a poste-
rior probability for association at each SNP (r2 threshold = 0.8,
posterior probability threshold = 0.99; (Wellcome Trust Case Con-
trol Consortium et al. 2012)). The physical positions of the SNPs in
the credible set were used to determine the boundaries of each locus.
As expected, the greater density of the GBS genotypes allowed us
to better define each interval. For instance, the lead locus at
chr17:27130383 was associated with distance traveled in periphery
in the open field test in F34 AILs (Figure 2). However, no SNPs were
genotyped between 26.7 and 28.7 Mb in the array SNPs, which
makes the size of this LD block ambiguous. In contrast, the Locus-
Zoom plot portraying GBS SNPs in the same region shows that
SNPs in high LD with chr17:27130383 are between 27 Mb and
28.3 Mb. The more accurate definition of the implicated intervals
allowed us to better refine the list of the coding genes and non-
coding variants associated with the phenotype (Table S6).

In our prior studies using the sparse marker set, we did not
attempt to increase the number of available markers by using
imputation. Therefore, we examined whether the disparity between
the numbers of loci identified by the two SNP sets could be resolved
by imputation, which should increase the number of markers avail-
able for GWAS. We used LG/J and SM/J whole genome sequencing
data as reference panels (Nikolskiy et al. 2015) and performed im-
putation on array and GBS SNPs using Beagle v4.1 (Browning and
Browning 2007). After QC filtering, we obtained 4.3M SNPs im-
puted from the array SNPs and 4.1M SNPs imputed from the GBS
SNPs. More imputed GBS SNPs were filtered out because GBS SNPs
were called from genotype probabilities, thus introducing uncer-
tainty in imputed SNPs. We found that imputed array genotypes
and imputed GBS genotypes did not meaningfully increase the
number of loci discovered, presumably because the utility of impu-
tation is inherently limited in a two-strain cross.

Under a polygenic model where a large number of additive
common variants contribute to a complex trait, heritability estimates
could be higher when more SNPs are considered (Yang et al. 2017).
Given that there were more GBS SNPs than array SNPs, we used
autosomal SNPs to examine whether GBS SNPs would generate
higher SNP heritability estimates compared to the sparse array
SNPs. Heritability estimates were similar for the two SNP sets, with
the exception of agouti coat color, which showed marginally greater
heritability for the GBS SNPs (Figure S5; Table S8). Our results show
that while the denser GBS SNP set was able to identify more
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genome-wide significant loci, greater SNP density did not improve
the polygenic signal.

Partial replication of loci identified in F34 or F39-43
and mega-analysis
We identified 25 genome-wide significant loci for 21 phenotypes in the
F39-43 cohort (Table S9). A subset of those traits: coat color, body
weight, and locomotor activity, were also phenotyped in the F34 AILs.
To assess replication, we determined whether the loci that were signif-
icant in one cohort (either F34 or F39-43) would also be significant in the
other. We termed the cohort in which a locus was initially discovered
as its “discovery set” and the cohort we attempted replication in as the
“replication set” (Table 1). Coat color phenotypes (both albino and
agouti) are Mendelian traits and thus served as positive controls. All
coat color and body weight loci were replicated. The three body weight
loci identified in the F34 were replicated at nominal levels of significance
(P, 0.05) in F39-43; similarly, one body weight locus identified in F39-43
was replicated in F34 (P , 0.05). However, none of the locomotor
activity loci were replicated in the reciprocal (replication) cohorts.

We found that using a broader definition of an association region
rather than a single SNP did not improve replication between the F34
cohort and the F39-43 cohorts. Confidence intervals (e.g., (Baud et al.
2013; Nicod et al. 2016)) and the LOD support interval (Conneally et al.
1985; Lander and Botstein 1989) have been used to define a QTL. LOD

support interval is very sensitive to the density of the SNPs where sparse
markers would produce misleadingly large support intervals. In con-
trast, the credible set interval is an estimate of the posterior probability
for association at markers neighboring the discovery SNP, and thus
defines the size of the association region. As a result, we extended the
replication comparison from the discovery SNP position to the credible
set interval. We found that in the replication cohort, the p-value
at the discovery SNP and that at the top SNP within the credible
set interval (defined by the discovery QTL) were generally similar
(Table S10). The replication of the locus chr14.79312393 (discovered
in the F34 cohort) in the F39-43 cohort was more successful using the
discovery QTL region defined by the credible set interval; the p-value
at the top SNP within the credible set interval was noticeably more
significant (chr14.82586326; p-value = 1.48·1026) than the p-value at
the discovery SNP (chr14.79312393; p-value = 0.0237; Table S10).
Our results suggest that for the most part, the discovery SNP accu-
rately represented the association strength of the loci, presumably
because of its strong linkage with the neighboring SNPs. In our case,
defining a QTL region by the credible set interval did not increase the
count of replicated sites between the two cohorts.

We then considered the more liberal “sign test”, a statistical method
to test for consistent differences between pairs of observations, to de-
termine whether the directions of the effect (beta) of the coat color,
body weight and activity loci were in the same direction between the

Figure 1 Minor allele frequency (MAF) distributions for F34 array, F34 GBS, F39-F43 GBS, and F34 and F39-F43 GBS SNP sets. The average MAF of
those 4,593 array SNPs was 0.388; the average MAF of the 60,392 GBS-derived SNPs in 428 F34 AIL mice was 0.382; the average MAF of the
59,790 GBS-derived SNPs in 600 F39-43 AIL mice was 0.358; the average MAF of the 58,461 GBS-derived SNPs that existed in both F34 and F39-43
AIL mice was 0.370 (Table S2). MAF distributions are highly comparable between AIL generations.
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discovery and replication cohorts. Specifically, we compared whether
the sign (direction) of the beta estimates are consistently above or below
zero. We found that 11 of 12 comparisons passed this much less
stringent test of replication. The one locus (at chr15.67627183) that
did not pass the sign test was the locomotor locus “discovered” in F39-43
(Table 1).

In light of the failure to replicate the locomotor activity findings, we
conducted a series of 2,500 simulations per trait to estimate the expected
power of our replication cohorts. For each phenotype we used the
kinship relatednessmatrix andvariance components estimated fromthe
replication set. For the coat color traits, we found that we had 100%
power to replicate the association at either genome-wide significant
levels or the more liberal p , 0.05 threshold (Figure S6). For body
weight and locomotor activity, power to replicate at a genome-wide
significance threshold ranged from 20 to 85%, whereas power to rep-
licate at the p, 0.05 threshold was between 80% and 100% (Figure S6).
These power estimates were inconsistent with our empirical observa-
tions for the locomotor activity traits, none of which replicated at even
the p, 0.05 threshold, where we should have had almost 100% power
(Table 1; Figure S6). However, our power simulations did not account
for Winner’s Curse (Zöllner and Pritchard 2007) or study-specific
heterogeneity (Zou et al. 2019).

To determine whether these factors could explain the lower than
expected rate of replication, we applied a statistical framework that
jointly models Winner’s Curse and study-specific heterogeneity in two
GWAS studies of the same phenotype (Zou et al. 2019). This frame-
work proposes two random effects models. The first model (WC) only
accounts forWinner’s Curse, while the secondmodel accounts for both
Winner’s Curse and study-specific heterogeneity due to confounding
(WC+C). In this context, we define confounding as any biological or
technical effect present in one study but not the other. We applied each
of these models once using F34 as the discovery study and once using
F39-43 as the discovery study. Themodels can be used to assess how well
Winner’s Curse explains the observed levels of replication. For example,
when F34 is used as the replication study for the albino coat color
phenotype, the expected value of the replication summary statistics

after accounting for winner’s curse is the same as the expected value
after accounting for Winner’s Curse and confounding (Figure S7).
While the 95% confidence intervals for the WC+C model are larger
than the WC model, both models seem to explain the observed data
well. However, when F34 is used as the discovery study for the locomo-
tor activity on day 1 or bodyweight, theWC+Cmodel explains the data
better than the WC model.

In order to quantitatively assess how well each of these models
explain the observed patterns of replication, we computed the predicted
replication rates under eachmodel (Methods) and compared these with
the empirical replication rates. In this analysis, we defined the empirical
replicationrate tobe theproportionofvariantspassing thegenome-wide
significance threshold in the discovery study that also pass the Bonfer-
roni corrected threshold in the replication study.Weused this definition
of replication for this analysis insteadof replication of leadSNPs to allow
fora largernumberofvariants tobe includedin themodelfittingprocess.
For all phenotypes tested, the WC model predicts that all the variants
passing the genome-wide significance threshold in the discovery study
should pass the Bonferroni corrected threshold in the replication study,
which is dramatically different from the observed replication of body
weight and locomotor activity on day 1 and 2 phenotypes (Table 2).
While the replication in the agouti coat color phenotype is not well
predicted by the WC+C model, this may be due to the fact that the
agouti phenotype is a dominant trait, while ourmodel assumes additive
allele effects. These results suggest that the sample sizes are sufficiently
large that Winner’s Curse cannot account for the lack of replication.
However, in these cases, the WC+C model has predicted replication
rates that are much closer to the true (observed) values, indicating that
the lack of replication in these phenotypes is more likely to be due to
study-specific heterogeneity that is potentially caused by confounding.

We evaluated whether or not the traits showed genetic correlations
across the two cohorts. High genetic correlations would indicate a high
degree of additive genetic effect that is shared between the two cohorts,
and the low genetic correlations would indicate limited potential for
replication.Weusedall autosomal SNPs tocalculate genetic correlations
between the F34 and F39-43 generations for body weight, coat color, and

Figure 2 Significant loci on chromosome 17 for open field, distance traveled in periphery in F34 AIL. As exemplified in this pair of LocusZoom
plots, GBS SNPs defined the boundaries of the loci much more precisely than array SNPs. GBS SNPs that are in high LD (r2 . 0.8, red dots) with
lead SNP chr17:27130383 resides between 27 �28.3 Mb. In contrast, too few SNPs are present in the array plot to draw any definitive conclusion
about the boundaries or LD pattern in this region. Purple track shows the credible set interval. LocusZoom plots for all loci identified in this paper
are in Figure S8.
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locomotor activity phenotypes (Table S11), using GCTA-GREML
(Yang et al. 2011). Albino and agouti coat color, body weight and
locomotor activity on days 1 and 2 were highly genetically correlated
(rG.0.7; Table S11). In contrast, locomotor activity on day 3 showed a
significant but weaker genetic correlation (rG = 0.577), perhaps reflect-
ing variability in the quality of the methamphetamine injection, which
were only given on day 3. Overall, these results suggest that genetic
influences on these traits were largely similar in the two cohorts;
however, the genetic correlations were less than 1, suggesting an
additional barrier to replication that was not accounted for in our
power simulations.

Wealsocalculated theSNPheritability forall traitsusingGCTA.SNP
heritability was consistently lower in the F39-43 cohort compared to the
F34 cohort, including the Mendelian traits of coat color. The 6 1 ·
standard error intervals of the F34 and F39-43 SNP heritability estimates
for the coat color trait albino overlapped. This observation indicates
that SNP heritability for albino in the two cohorts is comparable. In
contrast, the 6 1 · standard error intervals of the F34 and F39-43 SNP

heritability estimates for the coat color trait agouti did not overlap. We
could not explain the differential SNP heritability for the binary trait
agouti in the two cohorts. The lower SNP heritability in F39-43 for the
rest of the quantitative traits could be a result of increased experimental
variance (Figure 3; Table S12; (Falconer 1960; Lynch and Walsh 1996;
Mhyre et al. 2005; Zöllner and Pritchard 2007; Visscher et al. 2008;
Zaitlen and Kraft 2012)).

Due to the relatively high genetic correlations (Table S11), we
suspected that a mega-analysis using the combined sample set would
allow for the identification of additional loci; indeed, mega-analysis
identified four novel genome-wide significant associations (Figure 4;
Table S13). The significance level of five out of six loci identified by the
mega-analysis was greater than that in either individual cohort. For
instance, the p-values obtained by mega-analysis for chr14:82672838
(p-value = 7.93·1029) for body weight were lower than the corre-
sponding p-values for the same loci for F34 (chr14:79312393,
p-value = 7.53·1026) and F39-43 (chr14.82586326, p-value =
2.63·1026; Table S13; Table 1).

Figure 3 SNP-heritability estimates
in F34 and F39-43 AILs. Square dots
represent the SNP heritability esti-
mated by the GCTA-GREML analysis
(Yang et al. 2011). The whiskers
flanking the square dots show the
6 1 · standard error of the heritabil-
ity estimate. All heritability estimates
are highly significant (p, 1.0·10205;
see Table S12).
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DISCUSSION
We used F34 and F39-43 generations of a LG/J x SM/J AIL to perform
GWAS, SNP heritability estimates, genetic correlations, replication and
mega-analysis. We had previously performed several GWAS using a
sparse marker set in the F34 cohort. In this study we used a denser set of
SNPs, obtained using GBS, to reanalyze the F34 cohort. We found
109 significant loci, 36 of which had not been identified in our prior
studies using the sparse marker set. We used a new, previously un-
published F39-43 cohort for GWAS and showed that genetic correlations
were high for the subset of traits that were measured in both cohorts.
Despite this, we found that many loci were not replicated between
cohorts, even when we used a relatively liberal definition of replication
(p , 0.05). The failure to replicate some of our findings was not
predicted by our power simulations. Therefore, we performed an anal-
ysis to determine whether Winner’s Curse and study-specific hetero-
geneity could account for the lower than expected replication rate.
Winner’s Curse alone could not explain the failure to replicate. How-
ever, modeling both Winner’s Curse and study-specific heterogeneity

better explained the observed replication rate. Finally, mega-analysis of
the two cohorts allowed us to discover four additional loci. Taken
together, our results provide a set of refined regions of association for
numerous physiological and behavioral traits in multiple generations of
AILs. These loci could serve as benchmarks for future GWAS results in
intercross mouse lines. More broadly, this study illustrates the difficulty
of replication even when using a highly controlled model system.

Previous publications from our lab used a sparse set of array
genotypes for GWAS of various behavioral and physiological traits in
688 F34 AILs (Cheng et al. 2010; Lionikas et al. 2010; Samocha et al.
2010; Parker et al. 2011, 2014; Carroll et al. 2017; Hernandez Cordero
et al. 2018; Gonzales et al. 2018). In this study we obtained a much
denser marker set for 428 of the initial 688 AIL mice using GBS. The
denser genotypes allowed us to identify most of the loci obtained using
the sparse set, as well as many additional loci. For instance, using the
sparse markers we identified a significant locus on chromosome 8 for
locomotor day 2 activity that contained only one gene: Csmd1 (CUB
and sushi multiple domains 1). Gonzales et al. (Gonzales et al. 2018)

Figure 4 Manhattan plots comparing F34 GBS, F39-43 GBS, and mega-analysis on locomotor day 1 test using 57,170 shared SNPs in all AIL
generations. We performed mega-analysis of F34 and F39-43 animals (n = 1,028) for body weight, coat color, and locomotor activity, the set of traits
that were measured in the same way in both cohorts.
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replicated this finding in F50-56 AILs and identified a cis-eQTL mapped
to the same region. Csmd1 mutant mice showed increased locomotor
activity compared to wild-type and heterozygous mice, indicating that
Csmd1 is likely a causal gene for locomotor and related traits (Gonzales
et al. 2018). We replicated this locus in the analysis of the F34 cohort
that used the denser marker set (Figure S8). We also replicated a locus
on chromosome 17 for distance traveled in the periphery in the open
field test (Figure 4; (Parker et al. 2014)), three loci on chromosomes 4,
6, and 14 for body weight (Figure S8; (Parker et al. 2011)), one locus
on chromosome 7 for mean corpuscular hemoglobin concentrations
(MCHC, complete blood count; Figure S8; (Bartnikas et al. 2012)), and
numerous loci on chromosome 4, 6, 7, 8, and 11 for muscle weights
(Figure S8; (Lionikas et al. 2010)). We noticed that even using original
sparse markers, some previously published loci were not replicated in
the current GWAS. The most likely explanation is that we had only
428 of the 688 mice used in the previous publications.

QTL mapping studies have traditionally used a 1.0�2.0 LOD sup-
port interval to approximate the size of the association region (see
(Cervino et al. 2005; Logan et al. 2013)). The LOD support interval,
proposed by Conneally et al. (Conneally et al. 1985) and Lander and
Botstein (Lander and Botstein 1989), is a simple confidence interval
method involving converting the p-value of the peak locus into a LOD
score, subtracting “drop size” from the peak locus LOD score, and
finding the two physical positions to the left and to the right of
the peak locus location that correspond to the subtracted LOD
score. Although Mangin et al. (Mangin et al. 1994) showed via
simulation that the boundaries of LOD support intervals depend
on effect size, others observed that a 1.0 �2.0 LOD support interval
accurately captures �95% coverage of the true location of the loci
when using a dense set of markers (Lander and Botstein 1989;
Dupuis and Siegmund 1999; Manichaikul et al. 2006). In the present
study, we considered using LOD support intervals but found that
the sparse array SNPs produced misleadingly large support inter-
vals. Various methods have been proposed for calculating confi-
dence intervals in analogous situations (e.g., (Baud et al. 2013;
Nicod et al. 2016)). We performed credible set analysis and com-
pared LocusZoom plots of the same locus region between array
SNPs and the GBS SNPs (Figure S8; (Pruim et al. 2010)). For ex-
ample, the benefit of the denser SNP coverage is easily observed in
the locus on chromosome 7 (array lead SNP chr7:44560350; GBS
lead SNP chr7:44630890) for the complete blood count trait “retic
parameters cell hemoglobin concentration mean, repeat”; denser
SNPs delineate the start and the end of an association block much

more clearly. Thus, there are advantages of dense SNP sets that go
beyond the ability to discover additional loci.

LD in the LG/J x SM/J AIL mice is more extensive than in the
Diversity Outbred mice and Carworth FarmsWhite mice (Parker et al.
2016). Some of the loci that we identified are relatively broad, making it
difficult to infer which genes are responsible for the association. We
focused on loci that contained five or fewer genes (Table S6). We
highlight a few genes that are supported by the existing literature for
their role in the corresponding traits. The lead SNP at chr1:77255381 is
associated with tibia length in F34 AILs (Table S6; Figure S8). One gene
at this locus, EphA4, codes for a receptor formembrane-bound ephrins.
EPHA4 plays an important role in the activation of the tyrosine kinase
JAK2 and the signal transducer and transcriptional activator STAT5B
in muscle, promoting the synthesis of insulin-like growth factor
1 (IGF-1) (Lai et al. 2004; Hyun 2013; Sawada et al. 2017). Mice with
mutated EphA4 shows significant defect in body growth (Hyun 2013).
Curiously, another gene at this locus, Pax3, has been shown as a tran-
scription factor expressed in resident muscle progenitor cells and is
essential for the formation of skeletal muscle in mice (Relaix et al.
2006). It is possible that both EphA4 and Pax3 are associated with
the trait tibia length because they are both involved in organismal
growth. Another region of interest is the locus at chr4:66866758, which
is associated with body weight (Table S6; Table S13). The lead SNP is
immediately upstream of Tlr4, Toll-like receptor 4, which recognizes
Gram-negative bacteria by its cell wall component, lipopolysaccharide
(Hoshino et al. 1999; Takeuchi et al. 1999). TLR4 responds to the high
circulating level of fatty acids and induces inflammatory signaling,
which leads to insulin resistance (Shi et al. 2006). Kim et al. showed
TLR-4-deficient mice were protected from the increase in proinflam-
matory cytokine level and gained less weight than wild-type mice when
fed on high fat diet (Kim et al. 2012). The association between Tlr4 and
body weight in the AILs corroborates these findings.

We considered both the F34 and the F39-43 as both “discovery”
and “replication” cohorts. Significant loci for coat color, which are
monogenic and served as positive controls, were replicated, between
the two cohorts, as expected. One locus for body weight was repli-
cated (p , 0.05) between F34 and F39-43. However, the loci for
locomotor activity were not replicated. Power analyses predicted
a much higher rate of replication, which led us to conduct addi-
tional analyses to better understand the lower than expected rate of
replication.

First, we used a newly introduced method to determine whether
Winner’s Curse (Zöllner and Pritchard 2007)) which has also been

n■ Table 2 Predicted replication rates. We applied the replication analysis to phenotypes with at least two genome-wide significant
variants in the discovery study. These phenotypes include body weight, albino coat color, agouti coat color, locomotor test day 1, and
locomotor test day 2. We computed the true replication rate as the fraction of variants that were genome-wide significant in the discovery
study that also passed the Bonferroni significance threshold in the replication study (“Empirical replication rate”). The model accounting
for Winner’s Curse and confounding (“Predicted replication rate WC+C”) explains the true replication rate more accurately than the model
accounting for only Winner’s Curse (“Predicted replication rate WC”)

Discovery set Replication set Phenotype
Empirical

replication rate
Predicted replication

rate (WC)
Predicted replication

rate (WC+C)

F34 GBS F39-43 GBS Body weight 0.009 1.000 0.044
Coat color, albino 1.000 1.000 0.997
Coat color, agouti 0.932 1.000 0.577
Locomotor test day 1 0.000 1.000 0.028
Locomotor test day 2 0.000 1.000 0.140

F39-43 GBS F34 GBS Body weight 0.297 1.000 0.071
Coat color, albino 0.911 1.000 0.932
Coat color, agouti 0.815 1.000 0.925
Locomotor test day 2 0.000 1.000 0.053
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termed the Beavis Effect (Beavis et al. 1991, 1994; Xu 2003; King and
Long 2017; Keele et al. 2019; Paterson 2019) could account for the lower
than expected rate of replication. Beavis’ original report described a lack
of replication of QTL for agronomic traits between small populations of
maize (Beavis et al. 1991). Using progeny sizes ranging from 100 to
1000, Beavis simulated interval mapping to evaluate the accuracy of the
estimates of phenotypic variance explained at the statistically significant
QTL (Beavis et al. 1994; Xu 2003; Paterson 2019). Simulations showed
that progeny sizes greatly influenced the estimates of phenotypic var-
iance explained; smaller progeny sizes (n = 100) generated highly over-
estimated estimates of phenotypic variances, whereas larger progeny
sizes (n = 1000) generated estimates of phenotypic variances similar to
the actual value (Xu 2003; Paterson 2019). King and Long (King and
Long 2017) further examined the Beavis Effect in the next-generation
mapping populations in Drosophila melanogaster. The authors found
that sample size was the major determinant for the overestimation of
phenotypic variance explained at the significant QTL in both the
GWAS-based Drosophila Genetic Reference Panel (DGRP) and the
multi-parental Drosophila Synthetic Population Resource (DSPR).
When sample size remained constant and the true phenotypic variance
explained at the significant QTL was small, the estimation bias was
more pronounced. In contrast, estimates for the phenotypic variance
explained at all simulated QTL, significant or not, were generally cen-
tered at the true values. In an analogous study of power and replication
in Collaborative Cross mice, Keele et al. (Keele et al. 2019) found that
the Beavis Effect wasmost striking when the number of strains and true
effect size of the QTL were small. This estimation bias indicates that
mapping statistically significant QTL across experiments, populations,
and panels can be problematic (Macdonald and Long 2004; Gruber
et al. 2007; Najarro et al. 2015). The analyses we performed indicated
that Winner’s Curse alone could not explain the lack of replication, but
a model that also included study-specific heterogeneity could.

Our analysis does cannot explain the source of the study-specific
heterogeneity. Possible sources of confounding could include maternal
effects, which could differentiate the F34 cohort and the F39-43 cohort
because F33 animals were transported to the University of Chicago from
Washington University in St. Louis. In contrast, the breeder animals of
the F39-43 cohort have already acclimated to the environment for mul-
tiple generations. Another possible source of confounding is that the
phenotyping of the F39-43 occurred over five generations (more than a
year) during which time numerous environmental factors may have
changed (e.g., several technicians performed the data collection). Such
factors are known to be an important potential source of confounding;
(Falconer 1960; Lynch andWalsh 1996; Crabbe et al. 1999; Mhyre et al.
2005; Visscher et al. 2008; Zaitlen and Kraft 2012; Sorge et al. 2014).
Our analyses did not correct for the fact that six phenotypes were
examined, thus somewhat increasing the chances that at least one of
our significant associations could have been a false positive that would
not be expected to replicate.

Interestingly, we found that the genetic correlations between the
discovery and replication samples were relatively high for all traits;
however, some traits replicated well and others replicated poorly. Our
subsequent analysis showed that study-specific heterogeneity was low
for the coat color traits, but higher for the body weight and locomotor
traits. This makes an important point, namely that a strong genetic
correlation can exists in the presence or absence of study-specific
heterogeneity. Finally, it was notable that replication (at p , 0.05)
was relatively successful for body weight, despite the significant evi-
dence of study-specific heterogeneity and low predicted replication
(Table 2). Power analyses predicted that the body weight loci should
replicate at the genome-wide significance threshold, whereas we only

observed replication when at the less stringent p, 0.05 level (Table 1).
The lack of replication at the genome-wide significance threshold for
the body weight phenotype was likely due to study-specific heteroge-
neity due to confounding that was not accounted for in the power
analyses. In Table 2, “predicted replication” refers to replication using
a Bonferroni significance threshold that accounts for the number of
significant SNPs in the discovery study. The low predicted replication
rate under theWC+Cmodel for the body weight phenotype is consis-
tent with the low replication (genome-wide) reported in Table 1. Thus,
both body weight and locomotor traits were strongly impacted by study
specific confounding; however, nominal replication was still possible
for body weight but not for the locomotor traits.

Finally, we performedamega-analysis usingF34 andF39-43AILmice.
The combined dataset allowed us to identify four novel genome-wide
significant associations that were not detected in either the F34 or the
F39-43 cohorts presumably because of the increased sample size in the
mega-analysis (Visscher et al. 2017). As is true for all GWAS, the loci
identified in the mega-analysis could be false positives.

In addition to performing many GWAS and related analyses that
led to the identification of dozens of novel loci for locomotor activity,
open field test, fear conditioning, light dark test for anxiety, complete
blood count, iron content in liver and spleen, andmuscle weight, our
study also tested our expectations about replication of GWAS
findings. We did not obtain the expected rate of replication. We
used a method that can distinguish between Winner’s Curse and
study-specific heterogeneity to show that the lower than expected
rate of replication was due to study-specific heterogeneity. This
indicates that study-specific heterogeneity can have a major impact
of replication even when in a model system when a genetically
identical population is tested under conditions that are designed
to be as similar as possible.
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