357 research outputs found
Unified Multifractal Description of Velocity Increments Statistics in Turbulence: Intermittency and Skewness
The phenomenology of velocity statistics in turbulent flows, up to now,
relates to different models dealing with either signed or unsigned longitudinal
velocity increments, with either inertial or dissipative fluctuations. In this
paper, we are concerned with the complete probability density function (PDF) of
signed longitudinal increments at all scales. First, we focus on the symmetric
part of the PDFs, taking into account the observed departure from scale
invariance induced by dissipation effects. The analysis is then extended to the
asymmetric part of the PDFs, with the specific goal to predict the skewness of
the velocity derivatives. It opens the route to the complete description of all
measurable quantities, for any Reynolds number, and various experimental
conditions. This description is based on a single universal parameter function
D(h) and a universal constant R*.Comment: 13 pages, 3 figures, Extended version, Publishe
Local and nonlocal pressure Hessian effects in real and synthetic fluid turbulence
The Lagrangian dynamics of the velocity gradient tensor A in isotropic and
homogeneous turbulence depend on the joint action of the self-streching term
and the pressure Hessian. Existing closures for pressure effects in terms of A
are unable to reproduce one important statistical role played by the
anisotropic part of the pressure Hessian, namely the redistribution of the
probabilities towards enstrophy production dominated regions. As a step towards
elucidating the required properties of closures, we study several synthetic
velocity fields and how well they reproduce anisotropic pressure effects. It is
found that synthetic (i) Gaussian, (ii) Multifractal and (iii) Minimal Turnover
Lagrangian Map (MTLM) incompressible velocity fields reproduce many features of
real pressure fields that are obtained from numerical simulations of the Navier
Stokes equations, including the redistribution towards enstrophy-production
regions. The synthetic fields include both spatially local, and nonlocal,
anisotropic pressure effects. However, we show that the local effects appear to
be the most important ones: by assuming that the pressure Hessian is local in
space, an expression in terms of the Hessian of the second invariant Q of the
velocity gradient tensor can be obtained. This term is found to be well
correlated with the true pressure Hessian both in terms of eigenvalue
magnitudes and eigenvector alignments.Comment: 10 pages, 4 figures, minor changes, final version, published in Phys.
Fluid
Lagrangian dynamics and statistical geometric structure of turbulence
The local statistical and geometric structure of three-dimensional turbulent
flow can be described by properties of the velocity gradient tensor. A
stochastic model is developed for the Lagrangian time evolution of this tensor,
in which the exact nonlinear self-stretching term accounts for the development
of well-known non-Gaussian statistics and geometric alignment trends. The
non-local pressure and viscous effects are accounted for by a closure that
models the material deformation history of fluid elements. The resulting
stochastic system reproduces many statistical and geometric trends observed in
numerical and experimental 3D turbulent flows, including anomalous relative
scaling.Comment: 5 pages, 5 figures, final version, publishe
Formal Verification of Nonlinear Inequalities with Taylor Interval Approximations
We present a formal tool for verification of multivariate nonlinear
inequalities. Our verification method is based on interval arithmetic with
Taylor approximations. Our tool is implemented in the HOL Light proof assistant
and it is capable to verify multivariate nonlinear polynomial and
non-polynomial inequalities on rectangular domains. One of the main features of
our work is an efficient implementation of the verification procedure which can
prove non-trivial high-dimensional inequalities in several seconds. We
developed the verification tool as a part of the Flyspeck project (a formal
proof of the Kepler conjecture). The Flyspeck project includes about 1000
nonlinear inequalities. We successfully tested our method on more than 100
Flyspeck inequalities and estimated that the formal verification procedure is
about 3000 times slower than an informal verification method implemented in
C++. We also describe future work and prospective optimizations for our method.Comment: 15 page
Lagrangian Velocity Statistics in Turbulent Flows: Effects of Dissipation
We use the multifractal formalism to describe the effects of dissipation on
Lagrangian velocity statistics in turbulent flows. We analyze high Reynolds
number experiments and direct numerical simulation (DNS) data. We show that
this approach reproduces the shape evolution of velocity increment probability
density functions (PDF) from Gaussian to stretched exponentials as the time lag
decreases from integral to dissipative time scales. A quantitative
understanding of the departure from scaling exhibited by the magnitude
cumulants, early in the inertial range, is obtained with a free parameter
function D(h) which plays the role of the singularity spectrum in the
asymptotic limit of infinite Reynolds number. We observe that numerical and
experimental data are accurately described by a unique quadratic D(h) spectrum
which is found to extend from to , as
the signature of the highly intermittent nature of Lagrangian velocity
fluctuations.Comment: 5 pages, 3 figures, to appear in PR
Intermittency of velocity time increments in turbulence
We analyze the statistics of turbulent velocity fluctuations in the time
domain. Three cases are computed numerically and compared: (i) the time traces
of Lagrangian fluid particles in a (3D) turbulent flow (referred to as the
"dynamic" case); (ii) the time evolution of tracers advected by a frozen
turbulent field (the "static" case), and (iii) the evolution in time of the
velocity recorded at a fixed location in an evolving Eulerian velocity field,
as it would be measured by a local probe (referred to as the "virtual probe"
case). We observe that the static case and the virtual probe cases share many
properties with Eulerian velocity statistics. The dynamic (Lagrangian) case is
clearly different; it bears the signature of the global dynamics of the flow.Comment: 5 pages, 3 figures, to appear in PR
Probing quantum and classical turbulence analogy through global bifurcations in a von K\'arm\'an liquid Helium experiment
We report measurements of the dissipation in the Superfluid Helium high
REynold number von Karman flow (SHREK) experiment for different forcing
conditions, through a regime of global hysteretic bifurcation. Our
macroscopical measurements indicate no noticeable difference between the
classical fluid and the superfluid regimes, thereby providing evidence of the
same dissipative anomaly and response to asymmetry in fluid and superfluid
regime. %In the latter case, A detailed study of the variations of the
hysteretic cycle with Reynolds number supports the idea that (i) the stability
of the bifurcated states of classical turbulence in this closed flow is partly
governed by the dissipative scales and (ii) the normal and the superfluid
component at these temperatures (1.6K) are locked down to the dissipative
length scale.Comment: 5 pages, 5 figure
Fully developed turbulence and the multifractal conjecture
We review the Parisi-Frisch MultiFractal formalism for
Navier--Stokes turbulence with particular emphasis on the issue of
statistical fluctuations of the dissipative scale. We do it for both Eulerian
and Lagrangian Turbulence. We also show new results concerning the application
of the formalism to the case of Shell Models for turbulence. The latter case
will allow us to discuss the issue of Reynolds number dependence and the role
played by vorticity and vortex filaments in real turbulent flows.Comment: Special Issue dedicated to E. Brezin and G. Paris
Acceleration and vortex filaments in turbulence
We report recent results from a high resolution numerical study of fluid
particles transported by a fully developed turbulent flow. Single particle
trajectories were followed for a time range spanning more than three decades,
from less than a tenth of the Kolmogorov time-scale up to one large-eddy
turnover time. We present some results concerning acceleration statistics and
the statistics of trapping by vortex filaments.Comment: 10 pages, 5 figure
Rigorous Polynomial Approximation using Taylor Models in Coq
International audienceOne of the most common and practical ways of representing a real function on machines is by using a polynomial approximation. It is then important to properly handle the error introduced by such an approximation. The purpose of this work is to offer guaranteed error bounds for a specific kind of rigorous polynomial approximation called Taylor model. We carry out this work in the Coq proof assistant, with a special focus on genericity and efficiency for our implementation. We give an abstract interface for rigorous polynomial approximations, parameter- ized by the type of coefficients and the implementation of polynomials, and we instantiate this interface to the case of Taylor models with inter- val coefficients, while providing all the machinery for computing them. We compare the performances of our implementation in Coq with those of the Sollya tool, which contains an implementation of Taylor models written in C. This is a milestone in our long-term goal of providing fully formally proved and efficient Taylor models
- …