1,537 research outputs found

    Universality classes in directed sandpile models

    Full text link
    We perform large scale numerical simulations of a directed version of the two-state stochastic sandpile model. Numerical results show that this stochastic model defines a new universality class with respect to the Abelian directed sandpile. The physical origin of the different critical behavior has to be ascribed to the presence of multiple topplings in the stochastic model. These results provide new insights onto the long debated question of universality in abelian and stochastic sandpiles.Comment: 5 pages, RevTex, includes 9 EPS figures. Minor english corrections. One reference adde

    From Minority Games to real markets

    Full text link
    We address the question of market efficiency using the Minority Game (MG) model. First we show that removing unrealistic features of the MG leads to models which reproduce a scaling behavior close to what is observed in real markets. In particular we find that i) fat tails and clustered volatility arise at the phase transition point and that ii) the crossover to random walk behavior of prices is a finite size effect. This, on one hand, suggests that markets operate close to criticality, where the market is marginally efficient. On the other it allows one to measure the distance from criticality of real market, using cross-over times. The artificial market described by the MG is then studied as an ecosystem with different_species_ of traders. This clarifies the nature of the interaction and the particular role played by the various populations.Comment: 9 pages, 7 figures, to appear in Quantitative Financ

    Corrections to scaling in the forest-fire model

    Get PDF
    We present a systematic study of corrections to scaling in the self-organized critical forest-fire model. The analysis of the steady-state condition for the density of trees allows us to pinpoint the presence of these corrections, which take the form of subdominant exponents modifying the standard finite-size scaling form. Applying an extended version of the moment analysis technique, we find the scaling region of the model and compute the first non-trivial corrections to scaling.Comment: RevTeX, 7 pages, 7 eps figure

    Green power grids: How energy from renewable sources affects networks and markets

    Get PDF
    The increasing attention to environmental issues is forcing the implementation of novel energy models based on renewable sources. This is fundamentally changing the configuration of energy management and is introducing new problems that are only partly understood. In particular, renewable energies introduce fluctuations which cause an increased request for conventional energy sources to balance energy requests at short notice. In order to develop an effective usage of low-carbon sources, such fluctuations must be understood and tamed. In this paper we present a microscopic model for the description and for the forecast of short time fluctuations related to renewable sources in order to estimate their effects on the electricity market. To account for the inter-dependencies in the energy market and the physical power dispatch network, we use a statistical mechanics approach to sample stochastic perturbations in the power system and an agent based approach for the prediction of the market players' behavior. Our model is data-driven; it builds on one-dayahead real market transactions in order to train agents' behaviour and allows us to deduce the market share of different energy sources. We benchmarked our approach on the Italian market, finding a good accordance with real data

    Crack roughness and avalanche precursors in the random fuse model

    Get PDF
    We analyze the scaling of the crack roughness and of avalanche precursors in the two dimensional random fuse model by numerical simulations, employing large system sizes and extensive sample averaging. We find that the crack roughness exhibits anomalous scaling, as recently observed in experiments. The roughness exponents (ζ\zeta, ζloc\zeta_{loc}) and the global width distributions are found to be universal with respect to the lattice geometry. Failure is preceded by avalanche precursors whose distribution follows a power law up to a cutoff size. While the characteristic avalanche size scales as s0LDs_0 \sim L^D, with a universal fractal dimension DD, the distribution exponent τ\tau differs slightly for triangular and diamond lattices and, in both cases, it is larger than the mean-field (fiber bundle) value τ=5/2\tau=5/2

    Internet of robotic things : converging sensing/actuating, hypoconnectivity, artificial intelligence and IoT Platforms

    Get PDF
    The Internet of Things (IoT) concept is evolving rapidly and influencing newdevelopments in various application domains, such as the Internet of MobileThings (IoMT), Autonomous Internet of Things (A-IoT), Autonomous Systemof Things (ASoT), Internet of Autonomous Things (IoAT), Internetof Things Clouds (IoT-C) and the Internet of Robotic Things (IoRT) etc.that are progressing/advancing by using IoT technology. The IoT influencerepresents new development and deployment challenges in different areassuch as seamless platform integration, context based cognitive network integration,new mobile sensor/actuator network paradigms, things identification(addressing, naming in IoT) and dynamic things discoverability and manyothers. The IoRT represents new convergence challenges and their need to be addressed, in one side the programmability and the communication ofmultiple heterogeneous mobile/autonomous/robotic things for cooperating,their coordination, configuration, exchange of information, security, safetyand protection. Developments in IoT heterogeneous parallel processing/communication and dynamic systems based on parallelism and concurrencyrequire new ideas for integrating the intelligent “devices”, collaborativerobots (COBOTS), into IoT applications. Dynamic maintainability, selfhealing,self-repair of resources, changing resource state, (re-) configurationand context based IoT systems for service implementation and integrationwith IoT network service composition are of paramount importance whennew “cognitive devices” are becoming active participants in IoT applications.This chapter aims to be an overview of the IoRT concept, technologies,architectures and applications and to provide a comprehensive coverage offuture challenges, developments and applications

    Optimizing interpolation of shoot density data from a Posidonia oceanica seagrass bed

    Get PDF
    A case study on the optimization of Posidonia oceanica density interpolation, using a data set from a large meadow at Porto Conte Bay (NW Sardinia, Italy), is presented. Ordinary point kriging, cokriging and a weighted average based on inverse square distance were used to interpolate density data measured in 36 sampling stations. The results obtained from different methods were then compared by means of a leave-one-out cross-validation procedure. The scale at which interpolation was carried out was defined on the basis of the Hausdorff dimension of the variogram. Optimizing spatial scale and data points search strategy allowed obtaining more accurate density estimates independently of the interpolation method
    corecore