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We analyze the scaling of the crack roughness and of avalanche precursors in the two-dimensional random
fuse model by numerical simulations, employing large system sizes and extensive sample averaging. We find
that the crack roughness exhibits anomalous scaling, as recently observed in experiments. The roughness
exponentssz ,zlocd and the global width distributions are found to be universal with respect to the lattice
geometry. Failure is preceded by avalanche precursors whose distribution follows a power law up to a cutoff
size. While the characteristic avalanche size scales ass0,LD, with a universal fractal dimensionD, the
distribution exponentt differs slightly for triangular and diamond lattices and, in both cases, it is larger than
the mean-fieldsfiber bundled valuet=5/2.
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I. INTRODUCTION

Understanding the scaling properties of fracture in disor-
dered media represents an intriguing theoretical problem
with some technological implicationsf1g. Experiments have
shown that in several materials under different loading con-
ditions the fracture surface is self-affinef2g and the out of
plane roughness exponent displays a universal value irre-
spective of the material studiedf3g. In particular, experi-
ments have been done in metalsf4g, glassf5g, rocksf6g and
ceramicsf7g, covering both ductile and brittle materials.

It was later shown that the roughness exponent conven-
tionally measured describes only the local properties, while
the fracture surface instead exhibits anomalous scalingf8g:
theglobal exponent describing the scaling of the crack width
with the sample size is larger than the local exponent mea-
sured on a single samplef9,10g. It is thus necessary to define
two roughness exponents a global oneszd and a local one
szlocd. Only the latter appears to be universal with a value
zloc.0.8 f3g. For the purpose of this paper, it is important to
mention that experiments performed in quasi-two-
dimensional geometries, in woodf11g or paperf12g, yield a
self-affine exponent close to the minimum energy surface
resultzloc=2/3.

Scaling is also observed in acoustic emission experiments,
where the distribution of pulses decays as a power law over
several decades. Experimental observations have been re-
ported for several materials such as woodf13g, cellular glass
f14g, concretef15g and paperf16g, but universality in the
scaling exponents does not appear to be present.

The experimental observation of scaling behavior sug-
gests an interpretation in terms of critical phenomena, but a
complete theoretical explanation has not been found. The
motion of a crack front has been modeled as a deformable
line pushed by the external stress through a random tough-
ness landscape. Deformation of the crack surface is caused
by disorder and opposed by the elastic stresses. In certain
conditions, the problem can be directly related to models and

theories of interface depinning in random media and the
roughness exponent computed by numerical simulations and
renormalization group calculationsf17,18g. Unfortunately,
the numerical agreement between this theoretical approach
and experiments is quite poorf19–21g.

One aspect missing from the crack line model is the
nucleation of voids in front of the main crack, an effect that
has been shown to occur experimentallyf22g. In this per-
spective, disordered lattice models appear to be more appro-
priate to describe the phenomenon. In these models the elas-
tic medium is described by a network of springs with random
failure thresholds. In the simplest approximation of a scalar
displacement, one recovers the random fuse modelsRFMd
where a lattice of fuses with random threshold are subject to
an increasing external voltagef23–27g. The model has been
numerically simulated to obtain the roughness of the fracture
surface in twof28,29g and three dimensionsf30,31g. The
measured roughness exponents are similar to the ones de-
scribing a minimum energy surfacesor a directed polymer in
d=2d which would imply that crack formation occurs by an
optimization process, but the issue is still controversial
f30,31g.

In addition, the fracture of the RFM is preceded by ava-
lanches of failure eventsf32–34g. These are reminiscent of
the acoustic emission activity observed in experiments. The
distribution of avalanche sizessi.e., the number of bonds
participating in an avalanched follows a power law. In previ-
ous simulations the exponent resulted to be close tot=5/2
f32,33g, the value expected in the global load sharing fiber
bundle modelsFBMd f35,36g. In this model, load is redistrib-
uted equally in all the fibers, representing thus a sort of
mean-field limit of the RFMf33g. The load transfer in the
RFM is long-ranged and is thus possible that RFM and FBM
display universal behaviorf37g. An intermediate case is pro-
vided by FBM with long-rangespower lawd load transfer
f38g: the difference with the RFM lies in the anisotropic
current transfer functionf37g.

Numerical simulation of fracture in the RFM is often
hampered by the high computational cost associated with
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solving a new large set of linear equations every time a new
lattice bond is broken. Previously, this fact has restricted the
simulations to smaller lattice sizes and fewer statistical sam-
pling of data, thereby affecting the quality of the results.
Here, thanks to the new algorithm discussed in Ref.f27g, we
report results of numerical simulations for large two-
dimensional latticesstriangular and diamondd with extended
statistics. Using this numerical algorithm, we were able to
investigate damage evolution in larger lattice systemsse.g.,
L=1024d, which to the authors knowledge, is so far the larg-
est lattice system used in studying damage evolution using
initially fully intact discrete lattice systems. The computa-
tional complexity of the algorithm in terms of operation
count is described in Ref.f27g, and Table 1 of Ref.f27g
presents the CPU times necessary for analyzing triangular
lattice systems of different sizes. In the final analysis, the
algorithm presented in Ref.f27g results in an overall compu-
tational benefit of 8000 times when one compares the CPU
times taken for the largest system sizes that were solved
previously sL=128d and in the current studysL=1024d. In
this paper, we concentrate on the roughness of the final crack
and the avalanche statistics preceding failure.

Using local and global measurements for the roughness
we find that cracks in the RFM follow anomalous scalingf8g.
The local roughness exponent is found to be in the range
zloc=0.70–0.75, while the global exponent falls in the range
z=0.80–0.85. Although the difference betweenz andzloc is
small it appears to be systematic. The results are obtained
using the local width and the power spectrum methods and
appear to be universal with respect to the lattice type. As a
further test, we compute the width distribution that can be
collapsed into a unique curve for different lattice sizes and
typesf39g.

Next, we consider the distribution of avalanche sizes. The
avalanche signal is not stationary and as the current is raised
avalanches becomes larger and larger. The last avalanches,
producing the failure of the sample, is typically much larger
than the previous one and it follows a normal distribution
with a typical value scaling assm,L1.4 f40g. Preceding ava-
lanches are distributed as a power law with a cutoff increas-
ing with the current. Integrating the distribution over all the
values of the current, we find a power law up to a cutoff,
scaling with the lattice size asLD, whereD.1.18 does not
depend on the lattice type and is thus universal. The expo-
nent describing the decay of the distribution is found instead
to differ for triangular and diamondssquare lattice with 45
degrees inclined bonds to the bus barsd lattices with a value
which is always larger than the FBM valuet=5/2.

The paper is organized as follows: in Sec. II we define the
model, in Sec. III we report the results on the crack rough-
ness, Sec. IV is devoted to the avalanche statistics, and in
Sec. V we conclude.

II. THE RANDOM FUSE MODEL

In the RFM f23g, the lattice is initially fully intact with
bonds having the same conductance and random breaking
thresholdst, uniformly distributed between 0 and 1. The
burning of a fuse occurs irreversibly, whenever the electrical

current in the fuse exceeds the breaking thresholdt of the
fuse. Periodic boundary conditions are imposed in the hori-
zontal direction to simulate an infinite system and a constant
voltage difference,V, is applied between the top and the
bottom of lattice system bus bars. Numerically, a unit voltage
difference,V=1, is set between the bus bars and the Kirch-
hoff equations are solved to determine the current flowing in
each of the fuses. Subsequently, for each fusej , the ratio
between the currenti j and the breaking thresholdtj is evalu-
ated, and the bondjc having the largest value, maxjsi j / tjd, is
irreversibly removedsburntd. The current is redistributed in-
stantaneously after a fuse is burnt implying that the current
relaxation in the lattice system is much faster than the break-
ing of a fuse. Each time a fuse is burnt, it is necessary to
recalculate the current redistribution in the lattice to deter-
mine the subsequent breaking of a bond. The process of
breaking of a bond, one at a time, is repeated until the lattice
system fails completely. At this point we analyze the mor-
phology of the spanning crack.

The same breaking sequence is obtained by raising the
voltage difference or the total current at an infinitesimal rate.
Doing this one can identify an avalanche as the set of fuses
breaking between two successive increases of the voltagesor
the currentd. In this paper, we follow Ref.f33g, considering
only current driven avalanches. The avalanche size is defined
as the number of fuses in an avalanche.

Simulations are performed on two dimensional triangular
and diamond lattices of linear sizes going fromL=16 up to
L=1024 sfor the triangular latticed or up to L=256 sfor the
diamond latticed. The total number of bonds in the lattice is
given by N=s3L+1dsL+1d for the triangular lattice andN
=2LsL+1d for the diamond lattice. Several results discussed
in the following sections could only be obtained under an
extensive statistical sampling. Due to numerical limitations
this could not be achieved for the largest lattice sizes. Each
numerical simulation was performed on a single processor of
Eagles184 nodes with four 375 MHz Power3-II processorsd
supercomputer at the Oak Ridge National Laboratory. The
statistically independentNconfig number of configurations
were simulated simultaneously on number of processors
available for computation.sThe actual values ofNconfig are
50000 forL up to 64, 12000 forL=128, 1200 forL=256,
200 forL=512 and 10 forL=1024; see Table 1 of Ref.f40g.d

III. CRACK ROUGHNESS

After the sample has failed we identify the final crack, an
example of which is reported in Fig. 1. The cracks typically
display some limited amount of dangling ends and over-
hangs. We remove them and obtain a single valued crack line
yx, where the values ofxP f0,Lg depend on the underlying
lattice topology. Several methods have been devised to char-
acterize the roughness of an interface and their reliability has
been tested against synthetic dataf43g. If the interface is
self-affine all the methods should yield the same result in the
limit of large samples. For instance, the local width,wsld
;kox(yx−s1/ldoXyX)2l1/2, where the sums are restricted to
regions of lengthl and the average is over different realiza-
tions, should scale aswsld, lz for l !L and should saturate
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to a valueW=wsLd,Lz corresponding to the global width.
The power spectrum Sskd;kŷkŷ−kl, where ŷk

;oxyxexpis2pxk/Ld, should decay asSskd,k−s2z+1d.
While numerical estimates with the two methods above

could yield different results, it is also possible that the scal-
ing is anomalousf8g. This has been observed not only in
various growth modelsf8g but also in fracture surfaces in
granite f9g and wood samplesf10g. Anomalous scaling im-
plies that the exponent describing the system size depen-
dence of the surfacediffers from the local exponent mea-
sured for a fixed system sizeL. In particular, the local width
scales aswsld, lzlocLz−zloc, so that the global roughnessW
scales asLz with z.zloc. Consequently, the power spectrum
scales asSskd,k−s2zloc+1dL2sz−zlocd.

Previous measurements of the crack roughness in the two-
dimensional random fuse model have been obtained studying
the global roughness and anomalous roughness could not be

detected. Here, thanks to the improved statistics and system
size range, we reveal clear indication of anomalous scaling
behavior. In Fig. 2 we report the local width for diamond and
triangular lattices for different sizesL. The curves for differ-
ent system sizes are not overlapping forl !L as expected for
anomalous scaling. The global width scales with an exponent
z=0.80±0.02 andz=0.83±0.02 for diamond and triangular
lattices, respectively. On the other hand the local width in-
creases with a smaller exponent, that can be estimated for the
larger system sizes aszloc.0.7 for both lattices. Anomalous
scaling implies that we can collapse the curves in Fig. 2 with
an exponentz ssee Fig. 3d that does not fit local roughness
curve. Conversely, we cannot collapse the curves using the
local exponent.

A more precise value of the exponents is obtained from
the power spectrum, which is expected to yield more precise
estimatesf43g. Figure 4 reports the data collapse of the
power spectra for different system sizes. The data are col-
lapsed usingz−zloc=0.1 andz−zloc=0.13 for diamond and
triangular lattices, respectively. A fit of the power law decay
of the spectrum yields insteadzloc=0.7 andzloc=0.74 for the
two lattices, implying z=0.8 and z=0.87. The results
are close to the real space estimates and we can attribute
the differences to the bias associated to the methods
employedf43g.

Although the value ofz−zloc is small, it is significantly
larger than zero so that we would conclude that anomalous
scaling is present. One should notice that the main argument
in favour of anomalous scaling does not come from the com-
parison of two power law fits, but rather on the fact that the
prefactor of the widthsand power spectrumd scales asLz−zloc.
We cannot exclude, however, the possibility that this is in-
stead just a logarithmic growth. While the local exponent is
close to the directed polymer valuez=2/3, theglobal value
is higher. In addition, the presence of anomalous scaling
would invalidate universality between directed polymers and
fracture, as directed polymers should not display anomalous
scaling. As for the question of universality of the random
fuse model crack roughness exponents, the values measured

FIG. 1. The final crack in a triangular lattice of sizeL=1024sa
detail is shown in the insetd. The crack displays some dangling ends
and overhangs that are removed before performing the analysis.

FIG. 2. The local widthwsld of the crack for different lattice sizes in log-log scale. A lines with the local exponentzloc=0.7 is plotted for
reference. The global width displays an exponentz.zloc. Data are shown for diamondsleftd and triangularsrightd lattices.
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above are quite close to each other and the differences could
be due to size effects. In order to have a further confirmation
of this, we have analyzed the distributionPsWd of the crack
global width. This distribution has been measured for various
interfaces in models and experiments and typically rescales
as f39g

PsWd = PsW/kWld/kWl, s1d

wherekWl,Lz is the average global width. The crack width
distribution has been measured for the random fuse model
with limited statistical sampling. We show in Fig. 5 that the
distributions can be collapsed well using Eq.s1d for diamond
and triangular lattices. The plot in Fig. 6 shows that the col-
lapsed distribution for the two lattices superimpose, which
we consider as a further indication of universality. Finally,
the width distributions are well fit by a log-normal distribu-
tion as shown in Fig. 6.

IV. AVALANCHES

The qualitative behavior of the avalanche statistics is well
understood in global load sharing FBM, which can be solved
exactly representing a mean-field version of the RFM
f33,36g. The FBM can be formulated as a parallel set of
fuses, with random breaking threshold, under a constant ap-
plied currentI. Thus each fuse carries the same currentf i
= I /n, wheren is the number of intact fuses. The FBM has
been solved exactly and it is known that there is a critical
value I = Ic at which the bundle fails through a macroscopic
avalanche. ForI , Ic fuses burn in smaller avalanches, whose
sizes are distributed as

pss,I*d = s−ghss/s*d, s2d

with g=3/2, andhsxd is a cutoff function. The cutoff sizes*

increases with the current and close toIc diverges ass*

,sIc− Id−1/s with s=1. One can then integrate the distribu-

FIG. 3. The best collapse of the local widthwsld of the crack yields an exponentsz=0.85d that does not fit the scaling withl sleftd.
Collapsing the data withzloc=0.7 is not possiblesrightd. Triangularsdiamondd lattice data are displayed with emptysfull d symbols.

FIG. 4. The power spectrum of the crackSsk,Ld for different lattice sizes in log-log scale. The slope defines the local exponent as
−s2zloc+1d. The spectra for all of the different lattice sizes can be collapsed indicating anomalous scaling. Data are shown for diamondsleftd
and triangularsrightd lattices.
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tion over all the values of the current, obtaining aPssd
,s−t with t=g+s=5/2.

Here we study the statistical properties of the avalanches
in the RFM. We can use the scaling laws established for the
FBM as a reference, with additional complications due to
finite size effects. In Fig. 7 we report the integrated ava-
lanche distribution obtained for different lattice sizes. We
observe a power law decay culminating with a peak at large
avalanche sizes. As in the FBM, the peak is due to the last
catastrophic event which can thus be considered as an outlier
and analyzed separately. When the last avalanche is removed
from the distribution the peak disappearsssee Fig. 7d.

The avalanche size distribution, once the last event is ex-
cluded, is a power law followed by an exponential cutoff at
large avalanche sizes. The cutoff sizes0 is increasing with
the lattice size, so that we can describe the distribution by a
scaling form

Pss,Ld = s−tgss/LDd, s3d

whereD represents the fractal dimension of the avalanches.
To take into account the different lattice geometries, it
is convenient to express scaling plots in terms ofN rather
thanL

Pss,Nd = s−tgss/ND/2d. s4d

A powerful method to test these scaling laws, extractingt
andD, is provided by the moment analysisf42g. We compute
the qth moment of the distributionMq;ksql and plot it as a
function of N. This defines an exponentsq as Mq,Nsq. If
the data follow Eq.s4d then sq=0 for q,t−1 and sq
=Dsq+1−td /2 for q.t−1. In order to measuresq, we con-
sider lattice sizes fromL=16 to L=128 since the statistical
sampling for larger sizes is not adequate to estimate correctly
the cutoffs0. The data displayed in Fig. 8 show that indeed
sq is linear in q at largeq and vanishes for smallq. The
curves for triangular and diamond lattice do not coincide: the
two lines are parallel, indicating thatD is similar, but the
intersection with thex axis differs. By a linear fit we obtain
t=2.75 andD /2=0.59 for diamond lattices andt=3.05 and
D /2=0.585 for triangular lattices. To confirm these results
we perform a data collapse using the estimated values of the
exponents and the result is reported in Fig. 9. While the data
collapse for diamond lattice is nearly perfect, some devia-
tions are noticeable for the triangular lattice.

From the analysis discussed above, we would conclude
that the avalanche fractalD dimension is universal, but a
significant difference is present for the exponentt. This dif-
ference could be due to lattice finite size effect as we will
discuss later. In addition, the value oft appears to be larger
than the mean-field resultt=5/2 obtained in the FBM. On
the basis of less accurate results, it was conjectured in Ref.
f33g that avalanches in the random fuse model are ruled by
mean-field theory. The present results seem to rule out this
possibility.

So far we have considered avalanche statistics integrating
the distribution over all the values of the current. We have

FIG. 5. The distribution of crack width for different lattice sizes can be collapsed using their average value. Data are shown for diamond
sleftd and triangularsrightd lattices.

FIG. 6. The distribution of crack width is universal for diamond
and triangular lattices since all the curves can be collapsed together.
A fit with a lognormal distribution is shown by a dashed line.
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noticed, however, that the avalanche signal is not stationary:
as the current increases so does the avalanche size. In par-
ticular, the last avalanche is much larger than the others. Its
typical size grows assm,Nb, with b.0.7, see Fig. 14 of
Ref. f40g ssm is referred asnf −np in that paperd, while the
distribution is approximately Gaussian as shown from the
data collapse reported in Fig. 10ssee alsof41gd. The signifi-
cantly different nature of the last avalanche with respect to
the precursors is thus revealed both by the distribution type
sGaussian or power lawd and by its characteristic value, scal-
ing as 2b.1.4 or D=1.18. This difference reflects the fact
that the last avalanche is a catastrophic event corresponding
to unstable crack growth, while precursors reflect metastable
crack growth: the two processes appear to be different.

In Fig. 11 we report the distribution of avalanche sizes
sampled at different values of the currentI. For each sample,

we normalize the current by its peak valueIc and divide the
I* = I / Ic axis into 20 bins. We then compute the avalanche
size distributionpss,I*d for each bin and average over differ-
ent realizations of the disorder. In Fig. 11 we report this
distribution for a diamond lattice of sizeL=128. The distri-
bution follows a law of the type

pss,I*d = s−g exps− s/s*d, s5d

with g.1.9, while in the FBMg=3/2, which is not sup-
ported by our resultsssee Fig. 11d.

In order to extract the dependence of the cutoffs* on I* ,
we compute the second moment of the distributionks2l. Ac-
cording to Eq.s5d, this should scale asks2l=ss*d3−g. Assum-
ing that for large systemss* ,s1−I*d−1/s sin the FBM this
holds withs=1d, we expect that the singularity is rounded at
small L as

s* ,
LD

s1 − I*d1/sLD + C
, s6d

whereC is a constant. The second moment can be collapsed
very well under this finite size scaling assumption with
1/s=1.4 andD=1.18 as shown in Fig. 12 for the diamond
lattice. The data collapse is consistent with the finite size
scaling of the integrated distribution with a cutoff increasing
ass0,LD. In fact integrating Eq.s5d we obtain

Pss,Ld , s−sg+sd expf− sC/LDg, s7d

which impliest=g+s. Using the estimated data we would
obtain g+s.2.6 in reasonable agreement with the inte-
grated distribution resultt=2.75.

We have performed the same analysis for the triangular
lattice, where we find similar scaling laws withg.2 and
s=1.3. This would givet=2.7 that is quite off from the
integrated distribution resultt=3.05. These variations could
indicate some systematic error present in the triangular lat-
tice results. We notice that while in the diamond lattice, at
the beginning of the simulation, all fuses carry the same

FIG. 7. The distribution of avalanche sizes for triangular lattices of different sizes. The peak at large size is due to the last avalanche,
corresponding to catastrophic failuresrightd. On the left figure we show the same distribution without the last event and with logarithmic
bins.

FIG. 8. The exponentsq ruling the scaling of theqth moment
for triangular and diamond lattice. The shift in the lines indicates a
difference in the value oft.
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current, in the triangular lattice only two thirds of the fuses
carry a current. As fuses break the current is redistributed
becoming inhomogeneous so that at breakdown this lattice
effect should not be visible. In fact scaling exponents com-
puted at failure, like the roughness exponent or the avalanche
cutoff, do not depend on the lattice type. On the other hand,
the integrated avalanche distribution is affected by the entire
rupture process and the estimated exponent could thus be
biased.

A further possibility can be obtained from the analogy
with the FBM. The avalanche distribution could be explained
by the interplay between local and a global interaction. In the
FBM with local load sharing one finds an apparent power
law scaling in a limited regime, with an effective exponent
aroundt=4.5 f36g. Numerical results from long-range load
transfer FBM interpolate between the mean-field resultst
=5/2 andhigher exponents valuesf38g. It could be that the
RFM follows a similar behavior due to local current en-
hancements close to the crack tips. In order to investigate
further the dependence of the avalanche distribution on the

lattice coordination numberZ, we performed simulations of
the RFM in a square lattice with next-nearest neighbors con-
nections, corresponding toZ=8. In this case we findt
.3.2, indicating that the estimated exponentt increases with
the coordination number. TheZ dependence of the avalanche
distributions is apparent from Fig. 13, where we also report a
simulation of a global load sharing FBM using a similar
lattice size and sampling statistics.

V. CONCLUSIONS

In this paper we have revised some statistical properties
of fracture in the random fuse model using an improved sta-
tistical sampling and larger lattices than what was previously
done in the past. We have analyzed the roughness of the final
crack for diamond and triangular lattices. The local rough-
ness exponent is found to bezloc=0.72±0.03 and appears to
be different from the global roughness exponent which turns
out to bez=0.83±0.04. These results have been obtained
from the local width and the power spectrum methods and

FIG. 9. Data collapse of the avalanche size distributions. The exponent used for the collapse aret=2.75 andD=1.18 for the diamond
lattice sleftd andt=3.05 andD=1.17 for the triangularsrightd lattice.

FIG. 10. Data collapse of the distribution of the last avalanche for diamondsleftd and triangularsrightd lattice.
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the error bars above merely represent the spread of the esti-
mated exponents using various methods and lattice types.
The data suggest that anomalous scaling is present, as al-
ready found in fracture experimentsf9g. The numerical value
of the local exponent is in reasonable agreement with the
experiments on quasi two-dimensional materialsf11,12g. As
a further test for universality, we have also evaluated the
width distribution f39g that can be collapsed into a single
curve for different lattice sizes and types. From the theoret-
ical point of view, our results seem to exclude the minimum
energy surface exponent ofz=2/3. While the local exponent
is close to that value, the global exponent is definitely higher.
In addition anomalous scaling is not expected for that model.
Thus the origin of measured roughness exponents and its
theoretical explanation remains still open.

We have also analyzed the scaling of failure precursors,
computing the distribution of avalanche sizes. The extensive
statistical sampling employed allowed us to observe a power
law decay up to a cutoff, which was not visible in previous
simulationsf32,33g. The cutoff size is found to increase with
the lattice size ass0,LD, where the exponentD.1.18 de-
pends very little on the lattice size. It is interesting to notice
that for self-affine lines of roughness,z, one expects a fractal
dimensionD=2−z f44g. If we plug into this expression the
global roughness results obtained above for the final crack,
we obtain D.1.13–1.20. This could imply that the geo-
metrical properties of the precursors are the same as that of
the final crack. On the other hand, the exponent of the ava-
lanche size distribution displays significant variations with
the lattice typesi.e., t=2.75 andt=3.05 for diamond and

FIG. 11. The avalanche size distributions sampled over a small bin of the reduced currentI* for a diamond lattice of sizeL=128 sleftd.
The distribution for the bin closest toI* =1 is well fit according to Eq.s5d with g=1.9. A fit with the mean-field valueg=1.5 yields a poor
result srightd.

FIG. 12. The second moment of the avalanche size distribution
as a function of the reduced current 1−I* for diamond lattices of
different sizessinsetd. The curves can be collapsed using the finite
size scaling assumption reported in Eq.s6d with g=1.9, D=1.18,
and 1/s=1.4.

FIG. 13. The avalanche size distributions forL=128 and differ-
ent values of the coordination numbers are compared with the result
of the FBM with global load sharing. FBM simulations are done on
a latttice of N=1282 sites and are averaged overNconfig=10000
realizations.
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triangular lattices, respectivelyd and is significantly different
from the mean-field resultt=5/2 that was conjectured to be
valid in f33g.

The integrated avalanche distribution is due to the convo-
lution of the avalanche distribution measured at different val-
ues of the current. We have shown that the nonintegrated
distribution is given by a power law with an exponential
cutoff that increases with the current. The combined analysis
of the distribution with respect to current and lattice size can
be performed using finite size scaling. The behavior of the
model is similar to the FBM, as noticed in Ref.f33g, but the
numerical values of the exponents change. For the diamond
lattice we estimateg=1.9 ands=1.4, while the FBM yields
g=3/2 ands=1. Similar results hold for the triangular lat-
tice although the scaling there appears to be less clear.

It would be interesting to understand these results theo-
retically by the renormalization group, using the mean-field
theory as a reference. Steps in this direction have been made
in Ref. f37g but the complicatedsdipolard structure of the
current redistribution function makes the problem very hard
to deal with. Long-range interactions appear to be crucial in
the appearence of scaling behavior, since local fracture mod-
els yield abrupt failure without large precursorsf45g. A simi-

lar scenario is characteristic of first-order phase transitions
occurring close to a spinodal. In that case spinodal scaling is
only seen in mean field or with long range interactionf46g.
The fact that the exponents deviate from mean-field ones and
apparently depend on the coordination number is problem-
atic. Analogy with critical phenomena normally implies that
the exponents are universal with respect to microscopic de-
tails, such as the lattice structure. The deviations we observe
could be due to very strong finite size effects, or logarithmic
corrections and universality would then be obtained only as-
ymptotically. Given the persistence of these effects up to
relatively large sizes a numerical resolution of this question
will be difficult to achieve.
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