37 research outputs found

    piRNA pathway evolution beyond gonad context: Perspectives from apicomplexa and trypanosomatids

    Get PDF
    piRNAs function as genome defense mechanisms against transposable elements insertions within germ line cells. Recent studies have unraveled that piRNA pathways are not limited to germ cells as initially reckoned, but are instead also found in non-gonadal somatic contexts. Moreover, these pathways have also been reported in bacteria, mollusks and arthropods, associated with safeguard of genomes against transposable elements, regulation of gene expression and with direct consequences in axon regeneration and memory formation. In this Perspective we draw attention to early branching parasitic protozoa, whose genome preservation is an essential function as in late eukaryotes. However, little is known about the defense mechanisms of these genomes. We and others have described the presence of putative PIWI-related machinery members in protozoan parasites. We have described the presence of a PIWI-like protein in Trypanosoma cruzi, bound to small non-coding RNAs (sRNAs) as cargo of secreted extracellular vesicles relevant in intercellular communication and host infection. Herein, we put forward the presence of members related to Argonaute pathways in both Trypanosoma cruzi and Toxoplasma gondii. The presence of PIWI-like machinery in Trypansomatids and Apicomplexa, respectively, could be evidence of an ancestral piRNA machinery that evolved to become more sophisticated and complex in multicellular eukaryotes. We propose a model in which ancient PIWI proteins were expressed broadly and had functions independent of germline maintenance. A better understanding of current and ancestral PIWI/piRNAs will be relevant to better understand key mechanisms of genome integrity conservation during cell cycle progression and modulation of host defense mechanisms by protozoan parasites

    Socioeconomic, Clinical, and Molecular Features of Breast Cancer Influence Overall Survival of Latin American Women

    Get PDF
    Molecular profile of breast cancer in Latin-American women was studied in five countries: Argentina, Brazil, Chile, Mexico, and Uruguay. Data about socioeconomic characteristics, risk factors, prognostic factors, and molecular subtypes were described, and the 60- month overall cumulative survival probabilities (OS) were estimated. From 2011 to 2013, 1,300 eligible Latin-American women 18 years or older, with a diagnosis of breast cancer in clinical stage II or III, and performance status ≦̸ 1 were invited to participate in a prospective cohort study. Face-to-face interviews were conducted, and clinical and outcome data, including death, were extracted from medical records. Unadjusted associations were evaluated by Chi-squared and Fisher’s exact tests and the OS by Kaplan–Meier method. Log-rank test was used to determine differences between cumulative probability curves. Multivariable adjustment was carried out by entering potential confounders in the Cox regression model. The OS at 60 months was 83.9%. Multivariable-adjusted death hazard differences were found for women living in Argentina (2.27), Chile (1.95), and Uruguay (2.42) compared with Mexican women, for older (≥60 years) (1.84) compared with younger (≤40 years) women, for basal-like subtype (5.8), luminal B (2.43), and HER2-enriched (2.52) compared with luminal A subtype, and for tumor clinical stages IIB (1.91), IIIA (3.54), and IIIB (3.94) compared with stage IIA women. OS was associated with country of residence, PAM50 intrinsic subtype, age, and tumor stage at diagnosis. While the latter is known to be influenced by access to care, including cancer screening, timely diagnosis and treatment, including access to more effective treatment protocols, it may also influence epigenetic changes that, potentially, impact molecular subtypes. Data derived from heretofore understudied populations with unique geographic ancestry and sociocultural experiences are critical to furthering our understanding of this complexity.Fil: de Almeida, Liz María. Instituto Nacional de Câncer; BrasilFil: Cortés, Sandra. Pontificia Universidad Católica de Chile; ChileFil: Vilensky, Marta. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Oncología "Ángel H. Roffo"; ArgentinaFil: Valenzuela, Olivia. Universidad de Sonora; MéxicoFil: Cortes Sanabria, Laura. Hospital de Especialidades Centro Medico Nacional Siglo XXI; MéxicoFil: de Souza, Mirian. Instituto Nacional de Câncer; BrasilFil: Barbeito, Rafael Alonso. Universidad de la República; UruguayFil: Abdelhay, Eliana. Instituto Nacional de Câncer; BrasilFil: Artagaveytia, Nora. Universidad de la Republica; UruguayFil: Daneri Navarro, Adrian. Universidad de Guadalajara; MéxicoFil: Llera, Andrea Sabina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Müller, Bettina. Instituto Nacional del Cáncer; ChileFil: Podhajcer, Osvaldo Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Velazquez, Carlos. Universidad de Sonora; MéxicoFil: Alcoba, Elsa. Hospital Maria Curie; ArgentinaFil: Alonso, Isabel. Centro Hospitalario Pereira Rossell; UruguayFil: Bravo, Alicia I.. Hospital Higa Eva Perón; ArgentinaFil: Camejo, Natalia. Universidad de la República; UruguayFil: Carraro, Dirce Maria. A. C. Camargo Cancer Center; BrasilFil: Castro, Mónica. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Oncología "Ángel H. Roffo"; ArgentinaFil: Cataldi, Sandra. Instituto Nacional del Cáncer; UruguayFil: Cayota, Alfonso. Instituto Pasteur de Montevideo; UruguayFil: Cerda, Mauricio. Universidad de Chile; ChileFil: Colombo, Alicia. Universidad de Chile; ChileFil: Crocamo, Susanne. Instituto Nacional de Câncer; BrasilFil: Silva-Garcia, Aida A.. Universidad de Guadalajara; MéxicoFil: Viña, Stella. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Oncología "Ángel H. Roffo"; ArgentinaFil: Zagame, Livia. Instituto Jalisciense de Cancerología; MéxicoFil: Jones, Beth. University of Yale; Estados UnidosFil: Szklo, Moysés. University Johns Hopkins; Estados Unido

    Peroxiredoxin II Regulates Effector and Secondary Memory CD8+ T cell Responses

    Get PDF
    Reactive oxygen intermediates (ROI) generated in response to receptor stimulation play an important role in cellular responses. However, the effect of increased H2O2on an antigen-specific CD8+ T cell response was unknown. Following T cell receptor (TCR) stimulation, the expression and oxidation of peroxiredoxin II (PrdxII), a critical antioxidant enzyme, increased in CD8+ T cells. Deletion of PrdxII increased ROI, S phase entry, division, and death during in vitro division. During primary acute viral and bacterial infection, the number of effector CD8+ T cells in PrdxII-deficient mice was increased, while the number of memory cells were similar to those of the wild-type cells. Adoptive transfer of P14 TCR transgenic cells demonstrated that the increased expansion of effector cells was T cell autonomous. After rechallenge, effector CD8+ T cells in mutant animals were more skewed to memory phenotype than cells from wild-type mice, resulting in a larger secondary memory CD8+ T cell pool. During chronic viral infection, increased antigen-specific CD8+ T cells accumulated in the spleens of PrdxII mutant mice, causing mortality. These results demonstrate that PrdxII controls effector CD8+ T cell expansion, secondary memory generation, and immunopathology
    corecore