100 research outputs found

    A Velocity-based Moving Mesh Virtual Element Method

    Full text link
    We present a velocity-based moving mesh virtual element method for the numerical solution of PDEs involving moving boundaries. The virtual element method is used for computing both the mesh velocity and a conservative Arbitrary Lagrangian-Eulerian solution transfer on general polygonal meshes. The approach extends the linear finite element method to polygonal mesh structures, achieving the same degree of accuracy. In the context of moving meshes, a major advantage of the virtual element approach is the ease with which nodes can be inserted on mesh edges. Demonstrations of node insertion techniques are presented to show that moving polygonal meshes can be simply adapted for situations where a boundary encounters a solid object or another moving boundary, without reduction in degree of accuracy

    Adaptive non-hierarchical Galerkin methods for parabolic problems with application to moving mesh and virtual element methods

    Get PDF
    We present a posteriori error estimates for inconsistent and non-hierarchical Galerkin methods for linear parabolic problems, allowing them to be used in conjunction with very general mesh modification for the first time. We treat schemes which are non-hierarchical in the sense that the spatial Galerkin spaces between time-steps may be completely unrelated from one another. The practical interest of this setting is demonstrated by applying our results to finite element methods on moving meshes and using the estimators to drive an adaptive algorithm based on a virtual element method on a mesh of arbitrary polygons. The a posteriori error estimates, for the error measured in the L2(H1) and L∞(L2) norms, are derived using the elliptic reconstruction technique in an abstract framework designed to precisely encapsulate our notion of inconsistency and non-hierarchicality and requiring no particular compatibility between the computational meshes used on consecutive time-steps, thereby significantly relaxing this basic assumption underlying previous estimates

    A posteriori error estimates for the virtual element method

    Get PDF
    An a posteriori error analysis for the virtual element method (VEM) applied to general elliptic problems is presented. The resulting error estimator is of residual-type and applies on very general polygonal/polyhedral meshes. The estimator is fully computable as it relies only on quantities available from the VEM solution, namely its degrees of freedom and element-wise polynomial projection. Upper and lower bounds of the error estimator with respect to the VEM approximation error are proven. The error estimator is used to drive adaptive mesh refinement in a number of test problems. Mesh adaptation is particularly simple to implement since elements with consecutive co-planar edges/faces are allowed and, therefore, locally adapted meshes do not require any local mesh post-processing

    Multigrid algorithms for hp-version interior penalty discontinuous Galerkin methods on polygonal and polyhedral meshes

    Get PDF
    In this paper we analyze the convergence properties of two-level and W-cycle multigrid solvers for the numerical solution of the linear system of equations arising from hp-version symmetric interior penalty discontinuous Galerkin discretizations of second-order elliptic partial differential equations on polygonal/polyhedral meshes. We prove that the two-level method converges uniformly with respect to the granularity of the grid and the polynomial approximation degree p, provided that the number of smoothing steps, which depends on p, is chosen sufficiently large. An analogous result is obtained for the W-cycle multigrid algorithm, which is proved to be uniformly convergent with respect to the mesh size, the polynomial approximation degree, and the number of levels, provided the latter remains bounded and the number of smoothing steps is chosen sufficiently large. Numerical experiments are presented which underpin the theoretical predictions; moreover, the proposed multilevel solvers are shown to be convergent in practice, even when some of the theoretical assumptions are not fully satisfied

    Hexagonal Smoothness-Increasing Accuracy-Conserving Filtering

    Get PDF
    Discontinuous Galerkin (DG) methods are a popular class of numerical techniques to solve partial differential equations due to their higher order of accuracy. However, the inter-element discontinuity of a DG solution hinders its utility in various applications, including visualization and feature extraction. This shortcoming can be alleviated by postprocessing of DG solutions to increase the inter-element smoothness. A class of postprocessing techniques proposed to increase the inter-element smoothness is SIAC filtering. In addition to increasing the inter-element continuity, SIAC filtering also raises the convergence rate from order k+1k+1 to order 2k+12k+1 . Since the introduction of SIAC filtering for univariate hyperbolic equations by Cockburn et al. (Math Comput 72(242):577–606, 2003), many generalizations of SIAC filtering have been proposed. Recently, the idea of dimensionality reduction through rotation has been the focus of studies in which a univariate SIAC kernel has been used to postprocess a two-dimensional DG solution (Docampo-Sánchez et al. in Multi-dimensional filtering: reducing the dimension through rotation, 2016. arXiv preprint arXiv:1610.02317). However, the scope of theoretical development of multidimensional SIAC filters has never gone beyond the usage of tensor product multidimensional B-splines or the reduction of the filter dimension. In this paper, we define a new SIAC filter called hexagonal SIAC (HSIAC) that uses a nonseparable class of two-dimensional spline functions called hex splines. In addition to relaxing the separability assumption, the proposed HSIAC filter provides more symmetry to its tensor-product counterpart. We prove that the superconvergence property holds for a specific class of structured triangular meshes using HSIAC filtering and provide numerical results to demonstrate and validate our theoretical results

    A-posteriori error estimators and RFB

    No full text
    We derive a posteriori bounds for the residual-free bubble (RFB) method for the solution of convection-dominated diffusion equations. Both linear functional error control and energy norm error control are considered. The implementation of a reliable and efficient hh adaptive algorithm is discussed. Finally, we proposed an hbhb adaptive algorithm in which the local bubble stabilisation is automatically turned off (bb derefinement) in large parts of the computational domain during the hh refinement process, without compromising the accuracy of the method. The first author acknowledges the financial support of INdAM and EPSRC

    Enhanced residual-free bubble method for convection-diffusion problems

    No full text
    We analyse the performance of the enhanced residual-free bubble (RFBe) method for the solution of elliptic convection-dominated convection-diffusion problems in 2-D, and compare the present method with the standard residual-free bubble (RFB) method. The advantages of the RFBe method are two-fold: it has better stability properties and it can be used to resolve boundary layers with high accuracy on globally coarse meshes. Copyright © 2005 John Wiley and Sons, Ltd
    corecore