223 research outputs found

    LUNA: Status and Prospects

    Full text link
    The essential ingredients of nuclear astrophysics are the thermonuclear reactions which shape the life and death of stars and which are responsible for the synthesis of the chemical elements in the Universe. Deep underground in the Gran Sasso Laboratory the cross sections of the key reactions responsible for the hydrogen burning in stars have been measured with two accelerators of 50 and 400 kV voltage right down to the energies of astrophysical interest. As a matter of fact, the main advantage of the underground laboratory is the reduction of the background. Such a reduction has allowed, for the first time, to measure relevant cross sections at the Gamow energy. The qualifying features of underground nuclear astrophysics are exhaustively reviewed before discussing the current LUNA program which is mainly devoted to the study of the Big-Bang nucleosynthesis and of the synthesis of the light elements in AGB stars and classical novae. The main results obtained during the study of reactions relevant to the Sun are also reviewed and their influence on our understanding of the properties of the neutrino, of the Sun and of the Universe itself is discussed. Finally, the future of LUNA during the next decade is outlined. It will be mainly focused on the study of the nuclear burning stages after hydrogen burning: helium and carbon burning. All this will be accomplished thanks to a new 3.5 MV accelerator able to deliver high current beams of proton, helium and carbon which will start running under Gran Sasso in 2019. In particular, we will discuss the first phase of the scientific case of the 3.5 MV accelerator focused on the study of 12^{12}C+12^{12}C and of the two reactions which generate free neutrons inside stars: 13^{13}C(α\alpha,n)16^{16}O and 22^{22}Ne(α\alpha,n)25^{25}Mg.Comment: To be published in Progress in Particle and Nuclear Physics 98C (2018) pp. 55-8

    Determination of gamma-ray widths in 15^{15}N using nuclear resonance fluorescence

    Full text link
    The stable nucleus 15^{15}N is the mirror of 15^{15}O, the bottleneck in the hydrogen burning CNO cycle. Most of the 15^{15}N level widths below the proton emission threshold are known from just one nuclear resonance fluorescence (NRF) measurement, with limited precision in some cases. A recent experiment with the AGATA demonstrator array determined level lifetimes using the Doppler Shift Attenuation Method (DSAM) in 15^{15}O. As a reference and for testing the method, level lifetimes in 15^{15}N have also been determined in the same experiment. The latest compilation of 15^{15}N level properties dates back to 1991. The limited precision in some cases in the compilation calls for a new measurement in order to enable a comparison to the AGATA demonstrator data. The widths of several 15^{15}N levels have been studied with the NRF method. The solid nitrogen compounds enriched in 15^{15}N have been irradiated with bremsstrahlung. The γ\gamma-rays following the deexcitation of the excited nuclear levels were detected with four HPGe detectors. Integrated photon-scattering cross sections of ten levels below the proton emission threshold have been measured. Partial gamma-ray widths of ground-state transitions were deduced and compared to the literature. The photon scattering cross sections of two levels above the proton emission threshold, but still below other particle emission energies have also been measured, and proton resonance strengths and proton widths were deduced. Gamma and proton widths consistent with the literature values were obtained, but with greatly improved precision.Comment: Final published version, minor grammar changes, 10 pages, 4 figures, 8 tables; An addendum is published where the last section is revised: T. Sz\"ucs and P. Mohr, Phys. Rev. C 92, 044328 (2015) [arXiv:1510.04956

    A new FSA approach for in situ γ\gamma-ray spectroscopy

    Full text link
    An increasing demand of environmental radioactivity monitoring comes both from the scientific community and from the society. This requires accurate, reliable and fast response preferably from portable radiation detectors. Thanks to recent improvements in the technology, γ\gamma-spectroscopy with sodium iodide scintillators has been proved to be an excellent tool for in-situ measurements for the identification and quantitative determination of γ\gamma-ray emitting radioisotopes, reducing time and costs. Both for geological and civil purposes not only 40^{40}K, 238^{238}U, and 232^{232}Th have to be measured, but there is also a growing interest to determine the abundances of anthropic elements, like 137^{137}Cs and 131^{131}I, which are used to monitor the effect of nuclear accidents or other human activities. The Full Spectrum Analysis (FSA) approach has been chosen to analyze the γ\gamma-spectra. The Non Negative Least Square (NNLS) and the energy calibration adjustment have been implemented in this method for the first time in order to correct the intrinsic problem related with the χ2\chi ^2 minimization which could lead to artifacts and non physical results in the analysis. A new calibration procedure has been developed for the FSA method by using in situ γ\gamma-spectra instead of calibration pad spectra. Finally, the new method has been validated by acquiring γ\gamma-spectra with a 10.16 cm x 10.16 cm sodium iodide detector in 80 different sites in the Ombrone basin, in Tuscany. The results from the FSA method have been compared with the laboratory measurements by using HPGe detectors on soil samples collected in the different sites, showing a satisfactory agreement between them. In particular, the 137^{137}Cs isotopes has been implemented in the analysis since it has been found not negligible during the in-situ measurements.Comment: accepted by Science of Total Environment: 8 pages, 10 figures, 3 table

    A new study of 25^{25}Mg(α\alpha,n)28^{28}Si angular distributions at EαE_\alpha = 3 - 5 MeV

    Full text link
    The observation of 26^{26}Al gives us the proof of active nucleosynthesis in the Milky Way. However the identification of the main producers of 26^{26}Al is still a matter of debate. Many sites have been proposed, but our poor knowledge of the nuclear processes involved introduces high uncertainties. In particular, the limited accuracy on the 25^{25}Mg(α\alpha,n)28^{28}Si reaction cross section has been identified as the main source of nuclear uncertainty in the production of 26^{26}Al in C/Ne explosive burning in massive stars, which has been suggested to be the main source of 26^{26}Al in the Galaxy. We studied this reaction through neutron spectroscopy at the CN Van de Graaff accelerator of the Legnaro National Laboratories. Thanks to this technique we are able to discriminate the (α\alpha,n) events from possible contamination arising from parasitic reactions. In particular, we measured the neutron angular distributions at 5 different beam energies (between 3 and 5 MeV) in the \ang{17.5}-\ang{106} laboratory system angular range. The presented results disagree with the assumptions introduced in the analysis of a previous experiment.Comment: 9 pages, 9 figures - accepted by EPJ

    Neutron-induced background by an alpha-beam incident on a deuterium gas target and its implications for the study of the 2H(alpha,gamma)6Li reaction at LUNA

    Full text link
    The production of the stable isotope Li-6 in standard Big Bang nucleosynthesis has recently attracted much interest. Recent observations in metal-poor stars suggest that a cosmological Li-6 plateau may exist. If true, this plateau would come in addition to the well-known Spite plateau of Li-7 abundances and would point to a predominantly primordial origin of Li-6, contrary to the results of standard Big Bang nucleosynthesis calculations. Therefore, the nuclear physics underlying Big Bang Li-6 production must be revisited. The main production channel for Li-6 in the Big Bang is the 2H(alpha,gamma)6Li reaction. The present work reports on neutron-induced effects in a high-purity germanium detector that were encountered in a new study of this reaction. In the experiment, an {\alpha}-beam from the underground accelerator LUNA in Gran Sasso, Italy, and a windowless deuterium gas target are used. A low neutron flux is induced by energetic deuterons from elastic scattering and, subsequently, the 2H(d,n)3He reaction. Due to the ultra-low laboratory neutron background at LUNA, the effect of this weak flux of 2-3 MeV neutrons on well-shielded high-purity germanium detectors has been studied in detail. Data have been taken at 280 and 400 keV alpha-beam energy and for comparison also using an americium-beryllium neutron source.Comment: Submitted to EPJA; 13 pages, 8 figure

    Revision of the 15N(p,{\gamma})16O reaction rate and oxygen abundance in H-burning zones

    Full text link
    The NO cycle takes place in the deepest layer of a H-burning core or shell, when the temperature exceeds T {\simeq} 30 {\cdot} 106 K. The O depletion observed in some globular cluster giant stars, always associated with a Na enhancement, may be due to either a deep mixing during the RGB (red giant branch) phase of the star or to the pollution of the primordial gas by an early population of massive AGB (asymptotic giant branch) stars, whose chemical composition was modified by the hot bottom burning. In both cases, the NO cycle is responsible for the O depletion. The activation of this cycle depends on the rate of the 15N(p,{\gamma})16O reaction. A precise evaluation of this reaction rate at temperatures as low as experienced in H-burning zones in stellar interiors is mandatory to understand the observed O abundances. We present a new measurement of the 15N(p,{\gamma})16O reaction performed at LUNA covering for the first time the center of mass energy range 70-370 keV, which corresponds to stellar temperatures between 65 {\cdot} 106 K and 780 {\cdot}106 K. This range includes the 15N(p,{\gamma})16O Gamow-peak energy of explosive H-burning taking place in the external layer of a nova and the one of the hot bottom burning (HBB) nucleosynthesis occurring in massive AGB stars. With the present data, we are also able to confirm the result of the previous R-matrix extrapolation. In particular, in the temperature range of astrophysical interest, the new rate is about a factor of 2 smaller than reported in the widely adopted compilation of reaction rates (NACRE or CF88) and the uncertainty is now reduced down to the 10% level.Comment: 6 pages, 5 figure

    Impact of a revised 25^{25}Mg(p,γ\gamma)26^{26}Al reaction rate on the operation of the Mg-Al cycle

    Get PDF
    Proton captures on Mg isotopes play an important role in the Mg-Al cycle active in stellar H-burning regions. In particular, low-energy nuclear resonances in the 25^{25}Mg(p,γ\gamma)26^{26}Al reaction affect the production of radioactive 26^{26}Algs^{gs} as well as the resulting Mg/Al abundance ratio. Reliable estimations of these quantities require precise measurements of the strengths of low-energy resonances. Based on a new experimental study performed at LUNA, we provide revised rates of the 25^{25}Mg(p,γ\gamma)26^{26}Algs^{gs} and the 25^{25}Mg(p,γ\gamma)26^{26}Alm^{m} reactions with corresponding uncertainties. In the temperature range 50 to 150 MK, the new recommended rate of the 26^{26}Alm^{m} production is up to 5 times higher than previously assumed. In addition, at T=100=100 MK, the revised total reaction rate is a factor of 2 higher. Note that this is the range of temperature at which the Mg-Al cycle operates in an H-burning zone. The effects of this revision are discussed. Due to the significantly larger 25^{25}Mg(p,γ\gamma)26^{26}Alm^{m} rate, the estimated production of 26^{26}Algs^{gs} in H-burning regions is less efficient than previously obtained. As a result, the new rates should imply a smaller contribution from Wolf-Rayet stars to the galactic 26^{26}Al budget. Similarly, we show that the AGB extra-mixing scenario does not appear able to explain the most extreme values of 26^{26}Al/27^{27}Al, i.e. >102>10^{-2}, found in some O-rich presolar grains. Finally, the substantial increase of the total reaction rate makes the hypothesis of a self-pollution by massive AGBs a more robust explanation for the Mg-Al anticorrelation observed in Globular-Cluster stars
    corecore