11,881 research outputs found

    DENIS Observations of Multibeam Galaxies in the Zone of Avoidance

    Get PDF
    Roughly 25% of the optical extragalactic sky is obscured by the dust and stars of our Milky Way. Dynamically important structures might still lie hidden in this zone. Various surveys are presently being employed to uncover the galaxy distribution in the Zone of Avoidance (ZOA) but all suffer from (different) limitations and selection effects. We illustrate the promise of using a multi-wavelength approach for extragalactic large-scale studies behind the ZOA, i.e. a combination of three surveys -- optical, systematic blind HI and near-infrared (NIR), which will allow the mapping of the peculiar velocity field in the ZOA through the NIR Tully-Fisher relation. In particular, we present here the results of cross-identifying HI-detected galaxies with the DENIS NIR survey, and the use of NIR colours to determine foreground extinctions.Comment: Accepted for publication in PASA. Proceedings of workshop "HI in the Local Universe, II", held in Melbourne, Sept. 1998. 9 pages, LaTeX2e, 2 encapsulated PS figures, 3 JPEG figures, Full resolution figures 2, 3 and 4 and full resolution paper are at ftp://ftp.iap.fr/pub/from_users/gam/PAPERS/HICONF

    The Parkes HI Zone of Avoidance Survey

    Get PDF
    A blind HI survey of the extragalactic sky behind the southern Milky Way has been conducted with the multibeam receiver on the 64-m Parkes radio telescope. The survey covers the Galactic longitude range 212 < l < 36 and Galactic latitudes |b| < 5, and yields 883 galaxies to a recessional velocity of 12,000 km/s. The survey covers the sky within the HIPASS area to greater sensitivity, finding lower HI-mass galaxies at all distances, and probing more completely the large-scale structures at and beyond the distance of the Great Attractor. Fifty-one percent of the HI detections have an optical/NIR counterpart in the literature. A further 27% have new counterparts found in existing, or newly obtained, optical/NIR images. The counterpart rate drops in regions of high foreground stellar crowding and extinction, and for low-HI mass objects. Only 8% of all counterparts have a previous optical redshift measurement. A notable new galaxy is HIZOA J1353-58, a possible companion to the Circinus galaxy. Merging this catalog with the similarly-conducted northern extension (Donley et al. 2005), large-scale structures are delineated, including those within the Puppis and Great Attractor regions, and the Local Void. Several newly-identified structures are revealed here for the first time. Three new galaxy concentrations (NW1, NW2 and NW3) are key in confirming the diagonal crossing of the Great Attractor Wall between the Norma cluster and the CIZA J1324.7-5736 cluster. Further contributors to the general mass overdensity in that area are two new clusters (CW1 and CW2) in the nearer Centaurus Wall, one of which forms part of the striking 180 deg (100/h Mpc) long filament that dominates the southern sky at velocities of ~3000 km/s, and the suggestion of a further Wall at the Great Attractor distance at slightly higher longitudes.Comment: Published in Astronomical Journal 9 February 2016 (accepted 26 September 2015); 42 pages, 7 tables, 18 figures, main figures data tables only available in the on-line version of journa

    Effective potential for Polyakov loops from a center symmetric effective theory in three dimensions

    Full text link
    We present lattice simulations of a center symmetric dimensionally reduced effective field theory for SU(2) Yang Mills which employ thermal Wilson lines and three-dimensional magnetic fields as fundamental degrees of freedom. The action is composed of a gauge invariant kinetic term, spatial gauge fields and a potential for the Wilson line which includes a "fuzzy" bag term to generate non-perturbative fluctuations. The effective potential for the Polyakov loop is extracted from the simulations including all modes of the loop as well as for cooled configuration where the hard modes have been averaged out. The former is found to exhibit a non-analytic contribution while the latter can be described by a mean-field like ansatz with quadratic and quartic terms, plus a Vandermonde potential which depends upon the location within the phase diagram.Comment: 10 pages, 22 figures, v2: published version (minor clarifications, update of reference list

    Multiscale 3D Shape Analysis using Spherical Wavelets

    Get PDF
    ©2005 Springer. The original publication is available at www.springerlink.com: http://dx.doi.org/10.1007/11566489_57DOI: 10.1007/11566489_57Shape priors attempt to represent biological variations within a population. When variations are global, Principal Component Analysis (PCA) can be used to learn major modes of variation, even from a limited training set. However, when significant local variations exist, PCA typically cannot represent such variations from a small training set. To address this issue, we present a novel algorithm that learns shape variations from data at multiple scales and locations using spherical wavelets and spectral graph partitioning. Our results show that when the training set is small, our algorithm significantly improves the approximation of shapes in a testing set over PCA, which tends to oversmooth data

    Metamagnetic phase transition of the antiferromagnetic Heisenberg icosahedron

    Full text link
    The observation of hysteresis effects in single molecule magnets like Mn12_{12}-acetate has initiated ideas of future applications in storage technology. The appearance of a hysteresis loop in such compounds is an outcome of their magnetic anisotropy. In this Letter we report that magnetic hysteresis occurs in a spin system without any anisotropy, specifically, where spins mounted on the vertices of an icosahedron are coupled by antiferromagnetic isotropic nearest-neighbor Heisenberg interaction giving rise to geometric frustration. At T=0 this system undergoes a first order metamagnetic phase transition at a critical field \Bcrit between two distinct families of ground state configurations. The metastable phase of the system is characterized by a temperature and field dependent survival probability distribution.Comment: 4 pages, 4 figures, submitted to Physical Review Letter

    Matching small β\beta functions using centroid jitter and two beam position monitors

    Full text link
    Matching to small beta functions is required to preserve emittance in plasma accelerators. The plasma wake provides strong focusing fields, which typically require beta functions on the mm-scale, comparable to those found in the final focusing of a linear collider. Such beams can be time consuming to experimentally produce and diagnose. We present a simple, fast, and noninvasive method to measure Twiss parameters in a linac using two beam position monitors only, relying on the similarity of the beam phase space and the jitter phase space. By benchmarking against conventional quadrupole scans, the viability of this technique was experimentally demonstrated at the FLASHForward plasma-accelerator facility.Comment: 8 pages, 7 figure

    Magnetic fields in single late-type giants in the Solar vicinity: How common is magnetic activity on the giant branches?

    Full text link
    We present our first results on a new sample containing all single G,K and M giants down to V = 4 mag in the Solar vicinity, suitable for spectropolarimetric (Stokes V) observations with Narval at TBL, France. For detection and measurement of the magnetic field (MF), the Least Squares Deconvolution (LSD) method was applied (Donati et al. 1997) that in the present case enables detection of large-scale MFs even weaker than the solar one (the typical precision of our longitudinal MF measurements is 0.1-0.2 G). The evolutionary status of the stars is determined on the basis of the evolutionary models with rotation (Lagarde et al. 2012; Charbonnel et al., in prep.) and fundamental parameters given by Massarotti et al. (1998). The stars appear to be in the mass range 1-4 M_sun, situated at different evolutionary stages after the Main Sequence (MS), up to the Asymptotic Giant Branch (AGB). The sample contains 45 stars. Up to now, 29 stars are observed (that is about 64 % of the sample), each observed at least twice. For 2 stars in the Hertzsprung gap, one is definitely Zeeman detected. Only 5 G and K giants, situated mainly at the base of the Red Giant Branch (RGB) and in the He-burning phase are detected. Surprisingly, a lot of stars ascending towards the RGB tip and in early AGB phase are detected (8 of 13 observed stars). For all Zeeman detected stars v sin i is redetermined and appears in the interval 2-3 km/s, but few giants with MF possess larger v sin i.Comment: 4 pages, 3 figures, Proceedings IAU Symposium No. 302, 201

    Scaling approach to itinerant quantum critical points

    Full text link
    Based on phase space arguments, we develop a simple approach to metallic quantum critical points, designed to study the problem without integrating the fermions out of the partition function. The method is applied to the spin-fermion model of a T=0 ferromagnetic transition. Stability criteria for the conduction and the spin fluids are derived by scaling at the tree level. We conclude that anomalous exponents may be generated for the fermion self-energy and the spin-spin correlation functions below d=3d=3, in spite of the spin fluid being above its upper critical dimension.Comment: 3 pages, 2 figures; discussion of the phase space restriction modified and, for illustrative purposes, restricted to the tree-level analysis of the ferromagnetic transitio
    • …
    corecore