302 research outputs found

    Lynch Syndrome from a surgeon perspective: retrospective study of clinical impact of mismatch repair protein expression analysis in colorectal cancer patients less than 50 years old.

    Get PDF
    BACKGROUND: In clinical practice, unexpected diagnosis of colorectal cancer in young patients requires prompt surgery, thus genetic testing for Lynch Syndrome is frequently missed, and clinical management may result incorrect. METHODS: Patients younger than 50 years old undergoing colorectal resection for cancer in the period 1994-2007 were identified (Group A, 49 cases), and compared to a group of randomly selected patients more than 50 (Group B, 85 cases). In 31 group A patients, immunohistochemical expression analysis of MLH1, MSH2 and MSH6 was performed; personal and familial history of patients with defective MMR proteins expression was further investigated, searching for synchronous and metachronous tumors in probands and their families. RESULTS: Fifty-one percent of patients did not express one or more MMR proteins (MMR-) and should be considered Lynch Syndrome carriers (16 patients, group A1); while only 31.2% of them were positive for Amsterdam criteria, 50% had almost another tumor, 37.5% had another colorectal tumor and 68% had relatives with colorectal tumor. This group of patients, compared with A2 group (< 50 years old, MMR+) and B group, showed typical characteristics of HNPCC, such as proximal location, mucinous histotype, poor differentiation, high stage and shorter survival. CONCLUSIONS: The present study confirms that preoperative knowledge of MMR proteins expression in colorectal cancer patients would allow correct staging, more extended colonic resection, specific follow-up and familial screening

    Madin Darby Canine Kidney : A new cell line for Pneumocystis carinii in vitro culture

    Get PDF
    Pneumocystis carinii pneumonia (PCP) is a highly frequent cause of morbidity and mortality in immunocompromised subjects, particularly in HIV-infected ones. The biology of P. Carinii is poorly understood because of the lack of reliable synthetic media or adequate cell lines to grow this opportunistic pathogen in continuous culture. We reported the suitability of the MDCK (Madin Darby Canine Kidney, ATTC CCL 34) cell line to support the temporary microorganism's growth in vitro and the experimental pharmacological trials, in comparison with the HEL 299 cell line, used as reference standard

    Development of a tomato pomace biorefinery based on a CO2-supercritical extraction process for the production of a high value lycopene product, bioenergy and digestate

    Get PDF
    Tomato peels and seeds (TP) are the most abundant canning industry waste actually used to produce biogas. TP is rich in lycopene (lyc) and represent a more sustainable feedstock than tomato fruits actually employed. It was therefore chosen as feedstock together with supercritical CO2 extraction (SFE-CO2) technology to develop a TP-SFE-CO2 biorefinery, topic scarcely investigated. Two TP were tested and although TP-SFE-CO2 parameters were the same, lyc recoveries depended by peel structure changes occurred during pre -SFE-CO2 drying step. Higher moisture (102.7 g kg-1 wet weight) permitted 97 % lyc recovery and gave a water-in-oil emulsion as extract. Mass balance confirmed that lyc isomerisation did not cause lyc losses. After a significant oil extraction, exhaust TP showed a biodegradability 64% higher than the raw one, attributable to fibre structure disruption. The biorefinery proposed (SFE_CO2+anaerobic digestion) determined positive economic revenue (+787.9 \u20ac t-1 TP) on the contrary of the actual TP management

    ProteinWorldDB: querying radical pairwise alignments among protein sets from complete genomes

    Get PDF
    Motivation: Many analyses in modern biological research are based on comparisons between biological sequences, resulting in functional, evolutionary and structural inferences. When large numbers of sequences are compared, heuristics are often used resulting in a certain lack of accuracy. In order to improve and validate results of such comparisons, we have performed radical all-against-all comparisons of 4 million protein sequences belonging to the RefSeq database, using an implementation of the Smith–Waterman algorithm. This extremely intensive computational approach was made possible with the help of World Community Grid™, through the Genome Comparison Project. The resulting database, ProteinWorldDB, which contains coordinates of pairwise protein alignments and their respective scores, is now made available. Users can download, compare and analyze the results, filtered by genomes, protein functions or clusters. ProteinWorldDB is integrated with annotations derived from Swiss-Prot, Pfam, KEGG, NCBI Taxonomy database and gene ontology. The database is a unique and valuable asset, representing a major effort to create a reliable and consistent dataset of cross-comparisons of the whole protein content encoded in hundreds of completely sequenced genomes using a rigorous dynamic programming approach

    Extensive spiral structure and corotation resonance

    Get PDF
    Spiral density wave theories demand that grand design spiral structure be bounded, at most, between the inner and outer Lindblad resonances of the spiral pattern. The corotation resonance lies between the outer and inner Lindblad resonances. The locations of the resonances are at radii whose ratios to each other are rather independent of the shape of the rotation curve. The measured ratio of outer to inner extent of spiral structure for a given spiral galaxy can be compared to the standard ratio of corotation to inner Lindblad resonance radius. In the case that the measured ratio far exceeds the standard ratio, it is likely that the corotation resonance is within the bright optical disk. Studying such galaxies can teach us how the action of resonances sculpts the appearance of spiral disks. This paper reports observations of 140 disk galaxies, leading to resonance ratio tests for 109 qualified spirals. It lists candidates that have a good chance of having the corotation resonance radius within the bright optical disk.Comment: 29 pages, 7 figure files, AAS late

    Inhibition of StearoylCoA Desaturase-1 Inactivates Acetyl-CoA Carboxylase and Impairs Proliferation in Cancer Cells: Role of AMPK

    Get PDF
    Cancer cells activate the biosynthesis of saturated fatty acids (SFA) and monounsaturated fatty acids (MUFA) in order to sustain an increasing demand for phospholipids with appropriate acyl composition during cell replication. We have previously shown that a stable knockdown of stearoyl-CoA desaturase 1 (SCD1), the main Δ9-desaturase that converts SFA into MUFA, in cancer cells decreases the rate of lipogenesis, reduces proliferation and in vitro invasiveness, and dramatically impairs tumor formation and growth. Here we report that pharmacological inhibition of SCD1 with a novel small molecule in cancer cells promoted the activation of AMP-activated kinase (AMPK) and the subsequent reduction of acetylCoA carboxylase activity, with a concomitant inhibition of glucose-mediated lipogenesis. The pharmacological inhibition of AMPK further decreased proliferation of SCD1-depleted cells, whereas AMPK activation restored proliferation to control levels. Addition of supraphysiological concentrations of glucose or pyruvate, the end product of glycolysis, did not reverse the low proliferation rate of SCD1-ablated cancer cells. Our data suggest that cancer cells require active SCD1 to control the rate of glucose-mediated lipogenesis, and that when SCD1 activity is impaired cells downregulate SFA synthesis via AMPK-mediated inactivation of acetyl-CoA carboxylase, thus preventing the harmful effects of SFA accumulation

    Sensory Ataxic Neuropathy in Golden Retriever Dogs Is Caused by a Deletion in the Mitochondrial tRNATyr Gene

    Get PDF
    Sensory ataxic neuropathy (SAN) is a recently identified neurological disorder in golden retrievers. Pedigree analysis revealed that all affected dogs belong to one maternal lineage, and a statistical analysis showed that the disorder has a mitochondrial origin. A one base pair deletion in the mitochondrial tRNATyr gene was identified at position 5304 in affected dogs after re-sequencing the complete mitochondrial genome of seven individuals. The deletion was not found among dogs representing 18 different breeds or in six wolves, ruling out this as a common polymorphism. The mutation could be traced back to a common ancestor of all affected dogs that lived in the 1970s. We used a quantitative oligonucleotide ligation assay to establish the degree of heteroplasmy in blood and tissue samples from affected dogs and controls. Affected dogs and their first to fourth degree relatives had 0–11% wild-type (wt) sequence, while more distant relatives ranged between 5% and 60% wt sequence and all unrelated golden retrievers had 100% wt sequence. Northern blot analysis showed that tRNATyr had a 10-fold lower steady-state level in affected dogs compared with controls. Four out of five affected dogs showed decreases in mitochondrial ATP production rates and respiratory chain enzyme activities together with morphological alterations in muscle tissue, resembling the changes reported in human mitochondrial pathology. Altogether, these results provide conclusive evidence that the deletion in the mitochondrial tRNATyr gene is the causative mutation for SAN

    StearoylCoA Desaturase-5: A Novel Regulator of Neuronal Cell Proliferation and Differentiation

    Get PDF
    Recent studies have demonstrated that human stearoylCoA desaturase-1 (SCD1), a Δ9-desaturase that converts saturated fatty acids (SFA) into monounsaturated fatty acids, controls the rate of lipogenesis, cell proliferation and tumorigenic capacity in cancer cells. However, the biological function of stearoylCoA desaturase-5 (SCD5), a second isoform of human SCD that is highly expressed in brain, as well as its potential role in human disease, remains unknown. In this study we report that the constitutive overexpression of human SCD5 in mouse Neuro2a cells, a widely used cell model of neuronal growth and differentiation, displayed a greater n-7 MUFA-to-SFA ratio in cell lipids compared to empty-vector transfected cells (controls). De novo synthesis of phosphatidylcholine and cholesterolesters was increased whereas phosphatidylethanolamine and triacylglycerol formation was reduced in SCD5-expressing cells with respect to their controls, suggesting a differential use of SCD5 products for lipogenic reactions. We also observed that SCD5 expression markedly accelerated the rate of cell proliferation and suppressed the induction of neurite outgrowth, a typical marker of neuronal differentiation, by retinoic acid indicating that the desaturase plays a key role in the mechanisms of cell division and differentiation. Critical signal transduction pathways that are known to modulate these processes, such epidermal growth factor receptor (EGFR)Akt/ERK and Wnt, were affected by SCD5 expression. Epidermal growth factor-induced phosphorylation of EGFR, Akt and ERK was markedly blunted in SCD5-expressing cells. Furthermore, the activity of canonical Wnt was reduced whereas the non-canonical Wnt was increased by the presence of SCD5 activity. Finally, SCD5 expression increased the secretion of recombinant Wnt5a, a non-canonical Wnt, whereas it reduced the cellular and secreted levels of canonical Wnt7b. Our data suggest that, by a coordinated modulation of key lipogenic pathways and transduction signaling cascades, SCD5 participates in the regulation of neuronal cell growth and differentiation
    corecore