7,252 research outputs found

    On giant piezoresistance effects in silicon nanowires and microwires

    Full text link
    The giant piezoresistance (PZR) previously reported in silicon nanowires is experimentally investigated in a large number of surface depleted silicon nano- and micro-structures. The resistance is shown to vary strongly with time due to electron and hole trapping at the sample surfaces. Importantly, this time varying resistance manifests itself as an apparent giant PZR identical to that reported elsewhere. By modulating the applied stress in time, the true PZR of the structures is found to be comparable with that of bulk silicon

    Late Light Curves of Normally-Luminous Type Ia Supernovae

    Get PDF
    The use of Type Ia supernovae as cosmological tools has reinforced the need to better understand these objects and their light curves. The light curves of Type Ia supernovae are powered by the nuclear decay of 56Ni56Co56Fe^{56}Ni \to ^{56}Co \to ^{56}Fe. The late time light curves can provide insight into the behavior of the decay products and their effect of the shape of the curves. We present the optical light curves of six "normal" Type Ia supernovae, obtained at late times with template image subtraction, and the fits of these light curves to supernova energy deposition models.Comment: Proceedings of Astronomy with Radioactivities V Conferenc

    Integrating remote sensing datasets into ecological modelling: a Bayesian approach

    Get PDF
    Process-based models have been used to simulate 3-dimensional complexities of forest ecosystems and their temporal changes, but their extensive data requirement and complex parameterisation have often limited their use for practical management applications. Increasingly, information retrieved using remote sensing techniques can help in model parameterisation and data collection by providing spatially and temporally resolved forest information. In this paper, we illustrate the potential of Bayesian calibration for integrating such data sources to simulate forest production. As an example, we use the 3-PG model combined with hyperspectral, LiDAR, SAR and field-based data to simulate the growth of UK Corsican pine stands. Hyperspectral, LiDAR and SAR data are used to estimate LAI dynamics, tree height and above ground biomass, respectively, while the Bayesian calibration provides estimates of uncertainties to model parameters and outputs. The Bayesian calibration contrasts with goodness-of-fit approaches, which do not provide uncertainties to parameters and model outputs. Parameters and the data used in the calibration process are presented in the form of probability distributions, reflecting our degree of certainty about them. After the calibration, the distributions are updated. To approximate posterior distributions (of outputs and parameters), a Markov Chain Monte Carlo sampling approach is used (25 000 steps). A sensitivity analysis is also conducted between parameters and outputs. Overall, the results illustrate the potential of a Bayesian framework for truly integrative work, both in the consideration of field-based and remotely sensed datasets available and in estimating parameter and model output uncertainties

    The cognitive interview: a tiered approach in the real world

    Get PDF
    This chapter will examine how the cognitive interview (CI) has been applied into the real world of policing. We will consider the impact the CI has had on every-day policing, ranging from front-line communication, to being utilised within a visually recorded interview, which may replace live evidence in the court-room (depending on the legislative framework of the country it is being applied). As the CI is utilised in a multitude of different types of information and evidence gathering scenarios the way in which the CI needs to be applied, and thus trained should reflect the context within which it is to be used in the field. Accordingly, the UK has developed the ‘Tiered approach’ to interview training (Clarke & Milne, 2011), whereby interviewers learn interviewing skills (including the CI) incrementally, across a police investigator’s career span. This approach has been adopted in numerous countries and the chapter will explain the approach, outline a model of training to maximize transference of skills into the workplace, and the research base examining its effectiveness in the field

    A high-resolution radio survey of the Vela supernova remnant

    Full text link
    This paper presents a high-resolution radio continuum (843 MHz) survey of the Vela supernova remnant. The contrast between the structures in the central pulsar-powered nebula of the remnant and the synchrotron radiation shell allows the remnant to be identified morphologically as a member of the composite class. The data are the first of a composite remnant at spatial scales comparable with those available for the Cygnus Loop and the Crab Nebula, and make possible a comparison of radio, optical and soft X-ray emission from the resolved shell filaments. The survey, made with the Molonglo Observatory Synthesis Telescope, covers an area of 50 square degrees at a resolution of 43'' x 60'', while imaging structures on scales up to 30'.Comment: 18 pages, 7 jpg figures (version with ps figures at http://astro.berkeley.edu/~dbock/papers/); AJ, in pres

    Evidence of a Curved Synchrotron Spectrum in the Supernova Remnant SN 1006

    Full text link
    A joint spectral analysis of some Chandra ACIS X-ray data and Molonglo Observatory Synthesis Telescope radio data was performed for 13 small regions along the bright northeastern rim of the supernova remnant SN 1006. These data were fitted with a synchrotron radiation model. The nonthermal electron spectrum used to compute the photon emission spectra is the traditional exponentially cut off power law, with one notable difference: The power-law index is not a constant. It is a linear function of the logarithm of the momentum. This functional form enables us to show, for the first time, that the synchrotron spectrum of SN 1006 seems to flatten with increasing energy. The effective power-law index of the electron spectrum is 2.2 at 1 GeV (i.e., radio synchrotron-emitting momenta) and 2.0 at about 10 TeV (i.e., X-ray synchrotron-emitting momenta). This amount of change in the index is qualitatively consistent with theoretical models of the amount of curvature in the proton spectrum of the remnant. The evidence of spectral curvature implies that cosmic rays are dynamically important instead of being "test" particles. The spectral analysis also provides a means of determining the critical frequency of the synchrotron spectrum associated with the highest-energy electrons. The critical frequency seems to vary along the northeastern rim, with a maximum value of 1.1e17 (0.6e17 - 2.1e17) Hz. This value implies that the electron diffusion coefficient can be no larger than a factor of ~4.5-21 times the Bohm diffusion coefficient if the velocity of the forward shock is in the range 2300-5000 km/s. Since the coefficient is close to the Bohm limit, electrons are accelerated nearly as fast as possible in the regions where the critical frequency is about 1.0e17 Hz.Comment: 41 pages, 8 figures, accepted by Ap

    Radio Observations of the Supernova Remnant Candidate G312.5-3.0

    Full text link
    The radio images from the Parkes-MIT-NRAO (PMN) Southern Sky Survey at 4850 MHz have revealed a number of previously unknown radio sources. One such source, G312.5-3.0 (PMN J1421-6415), has been observed using the multi-frequency capabilities of the Australia Telescope Compact Array (ATCA) at frequencies of 1380 MHz and 2378 MHz. Further observations of the source were made using the Molonglo Observatory Synthesis Telescope (MOST) at a frequency of 843 MHz. The source has an angular size of 18 arcmin and has a distinct shell structure. We present the reduced multi-frequency observations of this source and provide a brief argument for its possible identification as a supernova remnant.Comment: 5 pages, 5 figures, Accepted for publication in MNRA
    corecore