34,051 research outputs found

    Local light-ray rotation

    Full text link
    We present a sheet structure that rotates the local ray direction through an arbitrary angle around the sheet normal. The sheet structure consists of two parallel Dove-prism sheets, each of which flips one component of the local direction of transmitted light rays. Together, the two sheets rotate transmitted light rays around the sheet normal. We show that the direction under which a point light source is seen is given by a Mobius transform. We illustrate some of the properties with movies calculated by ray-tracing software.Comment: 9 pages, 6 figure

    Metamaterials for light rays: ray optics without wave-optical analog in the ray-optics limit

    Get PDF
    Volumes of sub-wavelength electromagnetic elements can act like homogeneous materials: metamaterials. In analogy, sheets of optical elements such as prisms can act ray-optically like homogeneous sheet materials. In this sense, such sheets can be considered to be metamaterials for light rays (METATOYs). METATOYs realize new and unusual transformations of the directions of transmitted light rays. We study here, in the ray-optics and scalar-wave limits, the wave-optical analog of such transformations, and we show that such an analog does not always exist. Perhaps, this is the reason why many of the ray-optical possibilities offered by METATOYs have never before been considered.Comment: 10 pages, 3 figures, references update

    Electric field induced charge noise in doped silicon: ionization of phosphorus donors

    Full text link
    We report low frequency charge noise measurement on silicon substrates with different phosphorus doping densities. The measurements are performed with aluminum single electron transistors (SETs) at millikelvin temperatures where the substrates are in the insulating regime. By measuring the SET Coulomb oscillations, we find a gate voltage dependent charge noise on the more heavily doped substrate. This charge noise, which is seen to have a 1/f spectrum, is attributed to the electric field induced tunneling of electrons from their phosphorus donor potentials.Comment: 4 page, 3 figure

    Displacement operators: the classical face of their quantum phase

    Full text link
    In quantum mechanics, the operator representing the displacement of a system in position or momentum is always accompanied by a path-dependent phase factor. In particular, two non-parallel displacements in phase space do not compose together in a simple way, and the order of these displacements leads to different displacement composition phase factors. These phase factors are often attributed to the nonzero commutator between quantum position and momentum operators, but such a mathematical explanation might be unsatisfactory to students who are after more physical insight. We present a couple of simple demonstrations, using classical wave mechanics and classical particle mechanics, that provide some physical intuition for the phase associated with displacement operators.Comment: 14 pages, 4 figures, reorganized and reformatte

    Mass inflation in a D dimensional Reissner-Nordstrom black hole: a hierarchy of particle accelerators ?

    Get PDF
    We study the geometry inside the event horizon of perturbed D dimensional Reissner-Nordstrom-(A)dS type black holes showing that, similarly to the four dimensional case, mass inflation also occurs for D>4. First, using the homogeneous approximation, we show that an increase of the number of spatial dimensions contributes to a steeper variation of the metric coefficients with the areal radius and that the phenomenon is insensitive to the cosmological constant in leading order. Then, using the code reported in arXiv:0904.2669 [gr-qc] adapted to D dimensions, we perform fully non-linear numerical simulations. We perturb the black hole with a compact pulse adapting the pulse amplitude such that the relative variation of the black hole mass is the same in all dimensions, and determine how the black hole interior evolves under the perturbation. We qualitatively confirm that the phenomenon is similar to four dimensions as well as the behaviour observed in the homogeneous approximation. We speculate about the formation of black holes inside black holes triggered by mass inflation, and about possible consequences of this scenario.Comment: 8 pages, 6 figure

    Interpretation of UV Absorption Lines in SN1006

    Get PDF
    We present a theoretical interpretation of the broad silicon and iron UV absorption features observed with the Hubble Space Telescope in the spectrum of the Schweizer-Middleditch star behind the remnant of Supernova 1006. These features are caused by supernova ejecta in SN1006. We propose that the redshifted SiII2 1260 A feature consists of both unshocked and shocked SiII. The sharp red edge of the line at 7070 km/s indicates the position of the reverse shock, while its Gaussian blue edge reveals shocked Si with a mean velocity of 5050 km/s and a dispersion of 1240 km/s, implying a reverse shock velocity of 2860 km/s. The measured velocities satisfy the energy jump condition for a strong shock, provided that all the shock energy goes into ions, with little or no collisionless heating of electrons. The line profiles of the SiIII and SiIV absorption features indicate that they arise mostly from shocked Si. The total mass of shocked and unshocked Si inferred from the SiII, SiIII and SiIV profiles is M_Si = 0.25 \pm 0.01 Msun on the assumption of spherical symmetry. Unshocked Si extends upwards from 5600 km/s. Although there appears to be some Fe mixed with the Si at lower velocities < 7070 km/s, the absence of FeII absorption with the same profile as the shocked SiII suggests little Fe mixed with Si at higher (before being shocked) velocities. The column density of shocked SiII is close to that expected for SiII undergoing steady state collisional ionization behind the reverse shock, provided that the electron to SiII ratio is low, from which we infer that most of the shocked Si is likely to be of a fairly high degree of purity, unmixed with other elements. We propose that the ambient interstellar density on the far side of SN1006 is anomalously low compared to the density around the rest of the remnant. ThisComment: 24 pages, with 8 figures included. Accepted for publication in the Astrophysical Journa
    corecore