595 research outputs found

    Nitrogen concentrations in a small Mediterranean stream: 1. Nitrate 2. Ammonium

    Get PDF
    The importance of storm frequency as well as the groundwater and hyporheic inputs on nitrate (NO<sub>3</sub>-N) and ammonium (NH<sub>4</sub>-N) levels in stream water were studied in a small perennial Mediterranean catchment, Riera Major, in northeast Spain. NO<sub>3</sub>-N concentrations ranged from 0.15 to 1.9 mg l<sup>-1</sup>. Discharge explained 47% of the annual NO<sub>3</sub>-N concentration variance, but this percentage increased to 97% when single floods were analysed. The rate of change in nitrate concentration with respect to flow, &#916;NO<sub>3</sub>-N/&#916;Q, ranged widely from 0 to 20 &#956;g NO<sub>3</sub>-N s l<sup>-2</sup>. The &#916;NO<sub>3</sub>-N/&#916;Q values fitted to a non linear model with respect to the storm flow magnitude (&#916;Q) (r<sup>2</sup>&#61;0.48, d.f.&#61;22, P<0.01). High values of &#916;NO<sub>3</sub>-N/&#916;Q occurred at intermediate &#916;Q values, whereas low &#916;NO<sub>3</sub>-N/&#916;Q values occurred during severe storms (&#916;Q > 400 l s<sup>-1</sup>). N<sub>3</sub>-N concentrations exhibit anticlockwise hysteresis patterns with changing flow and the patterns observed for autumnal and winter storms indicated that groundwater was the main N<sub>3</sub>-N source for stream and hyporheic water. At baseflow, NO<sub>3</sub>-N concentration in groundwater was higher (t&#61;4.75, d.f.&#61;29, P>0.001) and co-varied with concentrations in the stream (r&#61;0.91, d.f.&#61;28, P<0.001). In contrast, NO<sub>3</sub>-N concentration in hyporheic water was identical to that in stream water. The role of the hyporheic zone as source or sink for ammonium was studied hyporheic was studied comparing its concentrations in stream and hyporheic zone before and after a major storm occurred in October 1994 that removed particulate organic matter stored in sediments. Results showed high ammonium concentrations (75&#177;28 s.d. &#956;g NH<sub>4</sub>-N l<sup>-1</sup>) before the storm flow in the hyporheic zone. After the storm, the ammonium concentration in the hyporheic dropped by 80% (13.6&#177;8 &#956;g N<sub>4</sub>-N l<sup>-1</sup>) and approached to the level found in stream water (11&#177;8 &#956;g NH<sub>4</sub>-N l<sup>-1</sup>) indicating that indisturbed hyporheic sediments act as a source for ammonium. After the storm, the ammonium concentrations in the stream, hyporheic and groundwater zones were very similar suggesting that stream ammonium concentrations are sustained mainly by input from groundwater. The present study provides evidence that storm flow magnitude is an important source of variability of nitrate concentration and fluxes in Mediterranean streams subjected to an irregular precipitation regime with prolonged dry periods

    The influence of riparian-hyporheic zone on the hydrological responses in an intermittent stream

    Get PDF
    Stream and riparian groundwater hydrology has been studied in a small intermittent stream draining a forested catchment for a system representative of a Mediterranean climate. The relationship between precipitation and stream runoff and the interactions between stream water and the surrounding riparian groundwater have been analysed under a wide spectrum of meteorological conditions. The hypothesis that the hydrological condition of the near-stream groundwater compartment can regulate the runoff generation during precipitation events was tested. Stream runoff is characterised by a summer dry period, and precipitation input explained only 25% of runoff variability over the study period (r<sup>2</sup> =0.25, d.f.=51, p<0.001). The variability of precipitation v. stream runoff is explained partly by the hydrogeological properties of the riparian near-stream zone. This zone is characterised by high hydrological conductivity values and abrupt changes in groundwater level in summer. The summer dry period begins with a rapid decrease in near-stream groundwater level, and ends just after the first autumnal rain when the original groundwater level recovers suddenly. Within this period, storms do not cause major stream runoff since water infiltrates rapidly into the riparian compartment until it is refilled during the subsequent winter and spring; then the precipitation explains the 80% of the stream runoff variability (r<sup>2</sup>=0.80, d.f.=34, p<0.001). These results suggest that the hydrological interaction between the riparian groundwater compartment and the stream channel is important in elucidating the hydrological responses during drought periods in small Mediterranean streams.</p> <p style='line-height: 20px;'><b>Keywords:</b> riparian zone, groundwater hydrology, runoff, intermittent stream, Mediterranean climate</p

    Calibration of the INCA model in a Mediterranean forested catchment: the effect of hydrological inter-annual variability in an intermittent stream

    No full text
    International audienceMediterranean regions are characterised by a stream hydrology with a marked seasonal pattern and high inter-annual variability. Accordingly, soil N processes and leaching of solutes in Mediterranean regions also show a marked seasonality, occurring in pulses as soils re-wet following rain. The Integrated Nitrogen Catchment model (INCA) was applied to Fuirosos, a Mediterranean catchment located in NE Spain using hydrological data and streamwater nitrate and ammonium concentrations collected from 1999 to 2002. This study tested the model under Mediterranean climate conditions and assessed the effect of the high inter-annual variability on the ability of INCA to simulate discharge and N fluxes. The model was calibrated for the whole three-year period and the n coefficients of determinion (r2) between simulated and observed data were 0.54 and 0.1 for discharge and nitrate temporal dynamics, respectively. Ammonium dynamics were simulated poorly and the linear regression between observed and simulated data was not significant statistically. To assess the effect of inter-annual variability on INCA simulations, the calibration process was run separately for two contrasting hydrological years: a dry year with a total rainfall of 525 mm and a wet year with a total of 871 mm. The coefficients of determination for the correlation between observed and simulated discharge for these two periods were 0.67 (p2 = 0.13 p2 = 0.56 p Keywords: environmental modelling, intermittent stream, Mediterranean climate, Fuirosos, hydrology, nitrat

    Pinus mugo essential oil impairs STAT3 activation through oxidative stress and induces apoptosis in prostate cancer cells

    Get PDF
    Essential oils (EOs) and their components have been reported to possess anticancer properties and to increase the sensitivity of cancer cells to chemotherapy. The aim of this work was to select EOs able to downregulate STAT3 signaling using Western blot and RT-PCR analyses. The molecular mechanism of anti-STAT3 activity was evaluated through spectrophotometric and fluorometric analyses, and the biological effect of STAT3 inhibition was analyzed by flow cytometry and wound healing assay. Herein, Pinus mugo EO (PMEO) is identified as an inhibitor of constitutive STAT3 phosphorylation in human prostate cancer cells, DU145. The down-modulation of the STAT3 signaling cascade decreased the expression of anti-proliferative as well as anti-apoptotic genes and proteins, leading to the inhibition of cell migration and apoptotic cell death. PMEO treatment induced a rapid drop in glutathione (GSH) levels and an increase in reactive oxygen species (ROS) concentration, resulting in mild oxidative stress. Pretreatment of cells with N-acetyl-cysteine (NAC), a cell-permeable ROS scavenger, reverted the inhibitory action of PMEO on STAT3 phosphorylation. Moreover, combination therapy revealed that PMEO treatment displayed synergism with cisplatin in inducing the cytotoxic effect. Overall, our data highlight the importance of STAT3 signaling in PMEO cytotoxic activity, as well as the possibility of developing adjuvant therapy or sensitizing cancer cells to conventional chemotherapy

    Dissolved organic matter in continental hydro-geothermal systems: insights from two hot springs of the East African Rift valley

    Get PDF
    Little is known about the quantity and quality of dissolved organic matter (DOM) in waters from continental geothermal systems, with only a few reports available from the Yellowstone US National Park. In this study, we explored the chemodiversity of DOM in water samples collected from two geothermal hot springs from the Kenyan East African Rift Valley, a region extremely rich in fumaroles, geysers, and spouting springs, located in close proximity to volcanic lakes. The DOM characterization included in-depth assessments performed by negative electrospray ionization Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR-MS). Reduced, saturated and little aromatic DOM compounds were dominant in the hot spring waters collected from either the Ol Njorowa gorge (ON) or the south shore of the soda-saline Lake Elementaita (ELM). Oxygen-poor and sulfur-bearing DOM molecules prevailed in ON, probably reflecting abiotic sulfurization from sulfide-rich geofluids. Nitrogen-bearing aliphatic and protein-like molecules were abundant in ELM, possibly perfusing through the organic-rich sediments of the adjacent Lake Elementaita. Notably, the heat-altered DOM of ancient autochthonous derivation could represent an overlooked source of aliphatic organic carbon for connected lentic environments, with a potential direct impact on nutrient cycling in lakes that receive geothermal water inputs

    Origin, accumulation and fate of dissolved organic matter in an extreme hypersaline shallow lake

    Full text link
    Hypersaline endorheic aquatic systems (H-SEAS) are lakes/shallow playas in arid and semiarid regions that undergo extreme oscillations in salinity and severe drought episodes. Although their geochemical uniqueness and microbiome have been deeply studied, very little is known about the availability and quality of dissolved organic matter (DOM) in the water column. A H-SEAS from the Monegros Desert (Zaragoza, NE Spain) was studied during a hydrological wetting-drying-rewetting cycle. DOM analysis included: (i) a dissolved organic carbon (DOC) mass balance; (ii) spectroscopy (absorbance and fluorescence) and (iii) a molecular characterization with Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR-MS). The studied system stored a large amount of DOC and under the highest salinity conditions, salt-saturated waters (i.e., brines with salinity > 30%) accumulated a disproportionate quantity of DOC, indicating a significant in-situ net DOM production. Simultaneously, during the hydrological transition from wet to dry, the DOM pool showed strong alterations of it molecular composition. Spectroscopic methods indicated that aromatic and degraded DOM was rapidly replaced by fresher, relatively small, microbial-derived moieties with a large C/N ratio. FT-ICR-MS highlighted the accumulation of small, saturated and oxidized molecules (molecular O/C > 0.5), with a remarkable increase in the relative contribution of highly oxygenated (molecular O/C > 0.9) compounds and a decrease of aliphatic and carboxyl-rich alicyclic moleculesThese results indicated that H-SEAS are extremely active in accumulating and processing DOM, with the notable release of organic solutes probably originated from decaying microplankton under large osmotic stress at extremely high salinitie

    FOLFIRINOX after first-line gemcitabine-based chemotherapy in advanced pancreatic cancer: a retrospective comparison with FOLFOX and FOLFIRI schedules

    Get PDF
    Background: Pancreatic adenocarcinoma is the fourth leading cause of cancer-related death. In cases with metastasis, the combination of 5-fluorouracil, irinotecan, and oxaliplatin (FOLFIRINOX) or gemcitabine-based chemotherapy regimens are considered the standard of care. However, the optimal sequence of these regimens is unclear. Methods: This retrospective study initially evaluated 186 patients with locally advanced/metastatic pancreatic cancer at three Italian institutions between February 2013 and October 2019. All patients had progressed after receiving gemcitabine-based first-line chemotherapy and were subsequently offered second-line FOLFIRINOX, FOLFOX-6, or FOLFIRI treatment. This study evaluated progression-free survival (PFS), overall survival from the start of second-line treatment (OS2), overall survival from the start of first-line treatment (OS1), and safety outcomes. Results: A total of 77 patients received ⩾4 cycles of second-line chemotherapy and were considered eligible: 15 patients received FOLFIRINOX, 32 patients received FOLFOX-6, and 30 patients received FOLFIRI. The FOLFIRINOX group had median PFS of 26.29 weeks and median OS2 of 47.86 weeks, while the FOLFIRI group had median PFS of 10.57 weeks and median OS2 of 25.00 weeks (p = 0.038). No significant differences were observed between the FOLFIRINOX and FOLFOX-6 groups in terms of PFS (26.29 weeks versus 23.07 weeks) or OS2 (47.86 weeks versus 42.00 weeks). The most common grade 3–4 toxicities were anemia, neutropenia, and thrombocytopenia, which occurred more frequently in the FOLFIRINOX and FOLFOX-6 groups. Conclusion: Relative to the FOLFIRI regimen, the FOLFIRINOX regimen had a favorable toxicity profile and better survival outcomes. No significant differences were observed relative to the FOLFOX-6 regimen

    S-Glutathionylation at Cys328 and Cys542 Impairs STAT3 Phosphorylation.

    Get PDF
    STAT3 is a latent transcription factor that promotes cell survival and proliferation and is often constitutively active in cancers. Although many reports provide evidence that STAT3 is a direct target of oxidative stress, its redox regulation is poorly understood. Under oxidative conditions STAT3 activity can be modulated by S-glutathionylation, a reversible redox modification of cysteine residues. This suggests the possible cross-talk between phosphorylation and glutathionylation and points out that STAT3 is susceptible to redox regulation. Recently, we reported that decreasing the GSH content in different cell lines induces inhibition of STAT3 activity through the reversible oxidation of thiol groups. In the present work, we demonstrate that GSH/diamide treatment induces S-glutathionylation of STAT3 in the recombinant purified form. This effect was completely reversed by treatment with the reducing agent dithiothreitol, indicating that S-glutathionylation of STAT3 was related to formation of protein-mixed disulfides. Moreover, addition of the bulky negatively charged GSH moiety impairs JAK2-mediated STAT3 phosphorylation, very likely interfering with tyrosine accessibility and thus affecting protein structure and function. Mass mapping analysis identifies two glutathionylated cysteine residues, Cys328 and Cys542, within the DNA-binding domain and the linker domain, respectively. Site direct mutagenesis and in vitro kinase assay confirm the importance of both cysteine residues in the complex redox regulatory mechanism of STAT3. Cells expressing mutant were resistant in this regard. The data presented herein confirmed the occurrence of a redox-dependent regulation of STAT3, identified the more redox-sensitive cysteines within STAT3 structure, and may have important implications for development of new drugs
    • …
    corecore