3,049 research outputs found

    Polar phonons and intrinsic dielectric response of the ferromagnetic insulating spinel CdCr2_2S4_4 from first principles

    Full text link
    We have studied the dielectric properties of the ferromagnetic spinel CdCr2_2S4_4 from first principles. Zone-center phonons and Born effective charges were calculated by frozen-phonon and Berry phase techniques within LSDA+U. We find that all infrared-active phonons are quite stable within the cubic space group. The calculated static dielectric constant agrees well with previous measurements. These results suggest that the recently observed anomalous dielectric behavior in CdCr2_2S4_4 is not due to the softening of a polar mode. We suggest further experiments to clarify this point

    Mediation of the association between vascular risk factors and depressive symptoms by c-reactive protein: Longitudinal evidence from the UK Biobank

    Get PDF
    People with vascular risk factors (VRFs) are at higher risk for depressive symptoms. Given recent findings implicating low-grade systemic inflammation in both vascular and mental health, this study examined the extent to which the VRF–depressive symptom association might be mediated by low-grade systemic inflammation. To this end, we analysed longitudinal data of 9,034 participants from the UK Biobank (mean age = 56.54 years), who took part in three consecutive assessments over the course of about 8 years. Cumulative VRF burden at baseline was defined as the presence of 5 VRFs (hypertension, obesity, hypercholesterolemia, diabetes, and smoking). Low-grade systemic inflammation was assessed using serum-derived C-reactive protein (CRP) and depressive symptoms were measured using the Patient Health Questionnaire-9 (PHQ-9). We performed mediation models using longitudinal data and a path analytic framework, while controlling for age, gender, racial-ethnic background, socioeconomic status, and baseline mood. VRFs at baseline showed a small association with higher depressive symptoms at follow-up (total effect = 0.014, 95% CI [0.007; 0.021]). CRP mediated this association (indirect effect = 0.003, 95% CI [0.001; 0.005]) and accounted for 20.10% of the total effect of VRF burden on depressive symptoms. Exploratory analyses taking a symptom-based approach revealed that mediating pathways pertained to specific depressive symptoms: tiredness and changes in appetite. These results suggest that the small association between VRF burden and depressive symptoms may be partly explained by the inflammation-promoting effects of VRFs, which might promote a specific symptom-profile of depression

    {\it Ab initio} calculations of magnetic structure and lattice dynamics of Fe/Pt multilayers

    Full text link
    The magnetization distribution, its energetic characterization by the interlayer coupling constants and lattice dynamics of (001)-oriented Fe/Pt multilayers are investigated using density functional theory combined with the direct method to determine phonon frequencies. It is found that ferromagnetic order between consecutive Fe layers is favoured, with the enhanced magnetic moments at the interface. The bilinear and biquadratic coupling coefficients between Fe layers are shown to saturate fast with increasing thickness of nonmagnetic Pt layers which separate them. The phonon calculations demonstrate a rather strong dependence of partial iron phonon densities of states on the actual position of Fe monolayer in the multilayer structure.Comment: 7 pages, 8 figure

    A mixed ultrasoft/normconserved pseudopotential scheme

    Get PDF
    A variant of the Vanderbilt ultrasoft pseudopotential scheme, where the normconservation is released for only one or a few angular channels, is presented. Within this scheme some difficulties of the truly ultrasoft pseudopotentials are overcome without sacrificing the pseudopotential softness. i) Ghost states are easily avoided without including semicore shells. ii) The ultrasoft pseudo-charge-augmentation functions can be made more soft. iii) The number of nonlocal operators is reduced. The scheme will be most useful for transition metals, and the feasibility and accuracy of the scheme is demonstrated for the 4d transition metal rhodium.Comment: 4 pages, 2 figure

    Anisotropy of the Mobility of Pentacene from Frustration

    Get PDF
    The bandstructure of pentacene is calculated using first-principles density functional theory. A large anisotropy of the hole and electron effective masses within the molecular planes is found. The band dispersion of the HOMO and the LUMO is analyzed with the help of a tight-binding fit. The anisotropy is shown to be intimately related to the herringbone structure.Comment: Accepted for publication in Synthetic Metal

    Stability of Ge-related point defects and complexes in Ge-doped SiO_2

    Full text link
    We analyze Ge-related defects in Ge-doped SiO_2 using first-principles density functional techniques. Ge is incorporated at the level of ~ 1 mol % and above. The growth conditions of Ge:SiO_2 naturally set up oxygen deficiency, with vacancy concentration increasing by a factor 10^5 over undoped SiO_2, and O vacancies binding strongly to Ge impurities. All the centers considered exhibit potentially EPR-active states, candidates for the identification of the Ge(n) centers. Substitutional Ge produces an apparent gap shrinking via its extrinsic levels.Comment: RevTeX 4 pages, 2 ps figure

    Neutral-ionic phase transition : a thorough ab-initio study of TTF-CA

    Full text link
    The prototype compound for the neutral-ionic phase transition, namely TTF-CA, is theoretically investigated by first-principles density functional theory calculations. The study is based on three neutron diffraction structures collected at 40, 90 and 300 K (Le Cointe et al., Phys. Rev. B 51, 3374 (1995)). By means of a topological analysis of the total charge densities, we provide a very precise picture of intra and inter-chain interactions. Moreover, our calculations reveal that the thermal lattice contraction reduces the indirect band gap of this organic semi-conductor in the neutral phase, and nearly closes it in the vicinity of the transition temperature. A possible mechanism of the neutral-ionic phase transition is discussed. The charge transfer from TTF to CA is also derived by using three different technics.Comment: 11 pages, 9 figures, 7 table

    First-principles study of spontaneous polarization in multiferroic BiFeO3_3

    Get PDF
    The ground-state structural and electronic properties of ferroelectric BiFeO3_3 are calculated using density functional theory within the local spin-density approximation and the LSDA+U method. The crystal structure is computed to be rhombohedral with space group R3cR3c, and the electronic structure is found to be insulating and antiferromagnetic, both in excellent agreement with available experiments. A large ferroelectric polarization of 90-100 Ό\muC/cm2^2 is predicted, consistent with the large atomic displacements in the ferroelectric phase and with recent experimental reports, but differing by an order of magnitude from early experiments. One possible explanation is that the latter may have suffered from large leakage currents. However both past and contemporary measurements are shown to be consistent with the modern theory of polarization, suggesting that the range of reported polarizations may instead correspond to distinct switching paths in structural space. Modern measurements on well-characterized bulk samples are required to confirm this interpretation.Comment: (9 pages, 5 figures, 5 tables

    Structural and magnetic properties of Fe/ZnSe(001) interfaces

    Full text link
    We have performed first principles electronic structure calculations to investigate the structural and magnetic properties of Fe/ZnSe(001) interfaces. Calculations involving full geometry optimizations have been carried out for a broad range of thickness of Fe layers(0.5 monolayer to 10 monolayers) on top of a ZnSe(001) substrate. Both Zn and Se terminated interfaces have been explored. Total energy calculations show that Se segregates at the surface which is in agreement with recent experiments. For both Zn and Se terminations, the interface Fe magnetic moments are higher than the bulk bcc Fe moment. We have also investigated the effect of adding Fe atoms on top of a reconstructed ZnSe surface to explore the role of reconstruction of semiconductor surfaces in determining properties of metal-semiconductor interfaces. Fe breaks the Se dimer bond formed for a Se-rich (2x1) reconstructed surface. Finally, we looked at the reverse growth i.e. growth of Zn and Se atoms on a bcc Fe(001) substrate to investigate the properties of the second interface of a magnetotunnel junction. The results are in good agreement with the theoretical and experimental results, wherever available.Comment: 7 pages, 8 figures, accepted for publication in PR
    • 

    corecore