28,904 research outputs found

    The Strathclyde Brain Computer Interface (S-BCI) : the road to clinical translation

    Get PDF
    In this paper, we summarise the state of development of the Strathclyde Brain Computer Interface (S-BCI) and what has been so far achieved. We also briefly discuss our next steps for translation to spinal cord injured patients and the challenges we envisage in this process and how we plan to address some of them. Projections of the S-BCI project for the coming few years are also presented

    Approximate Killing Vectors on S^2

    Full text link
    We present a new method for computing the best approximation to a Killing vector on closed 2-surfaces that are topologically S^2. When solutions of Killing's equation do not exist, this method is shown to yield results superior to those produced by existing methods. In addition, this method appears to provide a new tool for studying the horizon geometry of distorted black holes.Comment: 4 pages, 3 figures, submitted to Physical Review D, revtex

    Induced pseudoscalar form factor of the nucleon at two-loop order in chiral perturbation theory

    Get PDF
    We calculate the imaginary part of the induced pseudoscalar form factor of the nucleon GP(t)G_P(t) in the framework of two-loop heavy baryon chiral perturbation theory. The effect of the calculated three-pion continuum on the pseudoscalar constant gP=(mμ/2M)GP(t=0.877mμ2)g_P = (m_\mu/2M) G_P(t=-0.877m_\mu^2) measurable in ordinary muon capture μpνμn\mu^-p\to \nu_\mu n turns out to be negligibly small. Possible contributions from counterterms at two-loop order are numerically smaller than the uncertainty of the dominant pion-pole term proportional to the pion-nucleon coupling constant gπN=13.2±0.2g_{\pi N}= 13.2\pm 0.2. We conclude that a sufficiently accurate representation of the induced pseudoscalar form factor of the nucleon at low momentum transfers tt is given by the sum of the pion-pole term and the Adler-Dothan-Wolfenstein term: GP(t)=4gπNMfπ/(mπ2t)2gAM2/3G_P(t) = 4g_{\pi N} M f_\pi/ (m_\pi^2 -t)- 2g_A M^2 /3, with =(0.44±0.02) = (0.44 \pm 0.02) fm2^2 the axial mean square radius of the nucleon.Comment: 6 pages, 2 figures, accepted for publication in Physical Review

    Heavy-Light Semileptonic Decays in Staggered Chiral Perturbation Theory

    Full text link
    We calculate the form factors for the semileptonic decays of heavy-light pseudoscalar mesons in partially quenched staggered chiral perturbation theory (\schpt), working to leading order in 1/mQ1/m_Q, where mQm_Q is the heavy quark mass. We take the light meson in the final state to be a pseudoscalar corresponding to the exact chiral symmetry of staggered quarks. The treatment assumes the validity of the standard prescription for representing the staggered ``fourth root trick'' within \schpt by insertions of factors of 1/4 for each sea quark loop. Our calculation is based on an existing partially quenched continuum chiral perturbation theory calculation with degenerate sea quarks by Becirevic, Prelovsek and Zupan, which we generalize to the staggered (and non-degenerate) case. As a by-product, we obtain the continuum partially quenched results with non-degenerate sea quarks. We analyze the effects of non-leading chiral terms, and find a relation among the coefficients governing the analytic valence mass dependence at this order. Our results are useful in analyzing lattice computations of form factors BπB\to\pi and DKD\to K when the light quarks are simulated with the staggered action.Comment: 53 pages, 8 figures, v2: Minor correction to the section on finite volume effects, and typos fixed. Version to be published in Phys. Rev.

    Null-vectors in Integrable Field Theory

    Get PDF
    The form factor bootstrap approach allows to construct the space of local fields in the massive restricted sine-Gordon model. This space has to be isomorphic to that of the corresponding minimal model of conformal field theory. We describe the subspaces which correspond to the Verma modules of primary fields in terms of the commutative algebra of local integrals of motion and of a fermion (Neveu-Schwarz or Ramond depending on the particular primary field). The description of null-vectors relies on the relation between form factors and deformed hyper-elliptic integrals. The null-vectors correspond to the deformed exact forms and to the deformed Riemann bilinear identity. In the operator language, the null-vectors are created by the action of two operators \CQ (linear in the fermion) and \CC (quadratic in the fermion). We show that by factorizing out the null-vectors one gets the space of operators with the correct character. In the classical limit, using the operators \CQ and \CC we obtain a new, very compact, description of the KdV hierarchy. We also discuss a beautiful relation with the method of Whitham.Comment: 36 pages, Late

    Multiple Schramm-Loewner Evolutions and Statistical Mechanics Martingales

    Full text link
    A statistical mechanics argument relating partition functions to martingales is used to get a condition under which random geometric processes can describe interfaces in 2d statistical mechanics at criticality. Requiring multiple SLEs to satisfy this condition leads to some natural processes, which we study in this note. We give examples of such multiple SLEs and discuss how a choice of conformal block is related to geometric configuration of the interfaces and what is the physical meaning of mixed conformal blocks. We illustrate the general ideas on concrete computations, with applications to percolation and the Ising model.Comment: 40 pages, 6 figures. V2: well, it looks better with the addresse

    Low Dirac Eigenmodes and the Topological and Chiral Structure of the QCD Vacuum

    Get PDF
    Several lattice calculations which probe the chiral and topological structure of QCD are discussed. The results focus attention on the low-lying eigenmodes of the Dirac operator in typical gauge field configurations.Comment: Talk presented at the DPF2000 Conferenc

    Momentum Dependent Vertices σγγ\sigma \gamma \gamma, σργ\sigma \rho \gamma and σρρ\sigma \rho \rho : The NJL Scalar Hidden by Chiral Symmetry

    Full text link
    We calculate the momentum dependence of three particle vertices σγγ\sigma \gamma \gamma, σργ\sigma \rho \gamma and σρρ\sigma \rho \rho in the context of a Nambu Jona Lasinio type model. We show how they influence the processes γγσππ\gamma \gamma \rightarrow \sigma \rightarrow \pi \pi, ργσ\rho \rightarrow \gamma \sigma and γγρρ\gamma \gamma \rightarrow \rho \rho and how chiral symmetry shadows the presence of the σ\sigma.Comment: 9 pages (latex), 5 figures available from the authors, preprint Coimbra 940506, IJS-TP-94/10, accepted for publication in Zeit. f. Physik

    Staggered Fermion Actions with Improved Rotational Invariance

    Get PDF
    We introduce a class of improved actions for staggered fermions which to O(p^4) and O(p^6), respectively, lead to rotationally invariant propagators. We discuss the resulting reduction of flavour symmetry breaking in the meson spectrum and comment on the improvement in the calculation of thermodynamic observables.Comment: 3 pages and 4 figures, Contribution to Lattice 97 (Poster Session), late
    corecore