52 research outputs found
An Evaluation Of Corporate Sustainability In Context Of The Jevon
The successful implementation and continuous development of sustainable corporate-level solutions is a challenge. These are endeavours in which social, environmental, and financial aspects must be weighed against each other. They can prove difficult to handle and, in some cases, almost unrealistic. Concepts such as green controlling, IT, and manufacturing look promising and are constantly evolving. This paper aims to achieve a better understanding of the field of corporate sustainability (CS)
Limitations for shapelet-based weak-lensing measurements
We seek to understand the impact on shape estimators obtained from circular
and elliptical shapelet models under two realistic conditions: (a) only a
limited number of shapelet modes is available for the model, and (b) the
intrinsic galactic shapes are not restricted to shapelet models.
We create a set of simplistic simulations, in which the galactic shapes
follow a Sersic profile. By varying the Sersic index and applied shear, we
quantify the amount of bias on shear estimates which arises from insufficient
modeling. Additional complications due to PSF convolution, pixelation and pixel
noise are also discussed.
Steep and highly elliptical galaxy shapes cannot be accurately modeled within
the circular shapelet basis system and are biased towards shallower and less
elongated shapes. This problem can be cured partially by allowing elliptical
basis functions, but for steep profiles elliptical shapelet models still depend
critically on accurate ellipticity priors. As a result, shear estimates are
typically biased low. Independently of the particular form of the estimator,
the bias depends on the true intrinsic galaxy morphology, but also on the size
and shape of the PSF.
As long as the issues discussed here are not solved, the shapelet method
cannot provide weak-lensing measurements with an accuracy demanded by upcoming
missions and surveys, unless one can provide an accurate and reliable
calibration, specific for the dataset under investigation.Comment: 8 pages, 5 figures, submitted to A&
The origin of peak-offsets in weak-lensing maps
Centroid positions of peaks identified in weak lensing mass maps often show
offsets with respect to other means of identifying halo centres, like position
of the brightest cluster galaxy or X-ray emission centroid. Here we study the
effect of projected large-scale structure (LSS), smoothing of mass maps, and
shape noise on the weak lensing peak positions. Additionally we compare the
offsets in mass maps to those found in parametric model fits. Using ray-tracing
simulations through the Millennium Run -body simulation, we find that
projected LSS does not alter the weak-lensing peak position within the limits
of our simulations' spatial resolution, which exceeds the typical resolution of
weak lensing maps. We conclude that projected LSS, although a major contaminant
for weak-lensing mass estimates, is not a source of confusion for identifying
halo centres. The typically reported offsets in the literature are caused by a
combination of shape noise and smoothing alone. This is true for centroid
positions derived both from mass maps and model fits.Comment: 6 pages, 4 figures, accepted for publication in MNRAS, significant
additions to v
Verzeichnis und Rote Liste der Pflanzengesellschaften Sachsens
Das kommentierte Verzeichnis der Pflanzengesellschaften bietet eine Übersicht über die Vielfalt der sächsischen Vegetation. Die Rote Liste der Pflanzengesellschaften ist ein Bindeglied zwischen den Roten Listen der Arten und der Biotoptypen. Sie dient sowohl der Bioindikation als auch der Fachplanung des Naturschutzes. Mit Hilfe der Roten Liste können Arten- und Biotopschutzprogramme ergänzt und Aktivitäten zum Schutz und zur Entwicklung bedrohter Lebensräume angeregt werden. Die vorliegende Rote Liste der Pflanzengesellschaften Sachsens ist eine vollständig überarbeitete Fortschreibung der ersten Auflage von 2001.
Redaktionsschluss: 31.12.202
Fungal volatile organic compounds: emphasis on their plant growth-promoting
Fungal volatile organic compounds (VOCs) commonly formed bioactive interface between plants and countless of microorganisms on the above- and below-ground plant-fungus interactions. Fungal-plant interactions symbolize intriguingly biochemical complex and challenging scenarios that are discovered by metabolomic approaches. Remarkably secondary metabolites (SMs) played a significant role in the virulence and existence with plant-fungal pathogen interaction; only 25% of the fungal gene clusters have been functionally identified, even though these numbers are too low as compared with plant secondary metabolites. The current insights on fungal VOCs are conducted under lab environments and to apply small numbers of microbes; its molecules have significant effects on growth, development, and defense system of plants. Many fungal VOCs supported dynamic processes, leading to countless interactions between plants, antagonists, and mutualistic symbionts. The fundamental role of fungal VOCs at field level is required for better understanding, so more studies will offer further constructive scientific evidences that can show the cost-effectiveness of ecofriendly and ecologically produced fungal VOCs for crop welfare
Multiple Translocation of the AVR-Pita Effector Gene among Chromosomes of the Rice Blast Fungus Magnaporthe oryzae and Related Species
Magnaporthe oryzae is the causal agent of rice blast disease, a devastating problem worldwide. This fungus has caused breakdown of resistance conferred by newly developed commercial cultivars. To address how the rice blast fungus adapts itself to new resistance genes so quickly, we examined chromosomal locations of AVR-Pita, a subtelomeric gene family corresponding to the Pita resistance gene, in various isolates of M. oryzae (including wheat and millet pathogens) and its related species. We found that AVR-Pita (AVR-Pita1 and AVR-Pita2) is highly variable in its genome location, occurring in chromosomes 1, 3, 4, 5, 6, 7, and supernumerary chromosomes, particularly in rice-infecting isolates. When expressed in M. oryzae, most of the AVR-Pita homologs could elicit Pita-mediated resistance, even those from non-rice isolates. AVR-Pita was flanked by a retrotransposon, which presumably contributed to its multiple translocation across the genome. On the other hand, family member AVR-Pita3, which lacks avirulence activity, was stably located on chromosome 7 in a vast majority of isolates. These results suggest that the diversification in genome location of AVR-Pita in the rice isolates is a consequence of recognition by Pita in rice. We propose a model that the multiple translocation of AVR-Pita may be associated with its frequent loss and recovery mediated by its transfer among individuals in asexual populations. This model implies that the high mobility of AVR-Pita is a key mechanism accounting for the rapid adaptation toward Pita. Dynamic adaptation of some fungal plant pathogens may be achieved by deletion and recovery of avirulence genes using a population as a unit of adaptation
Genome Sequencing and Comparative Transcriptomics of the Model Entomopathogenic Fungi Metarhizium anisopliae and M. acridum
Metarhizium spp. are being used as environmentally friendly alternatives to chemical insecticides, as model systems for studying insect-fungus interactions, and as a resource of genes for biotechnology. We present a comparative analysis of the genome sequences of the broad-spectrum insect pathogen Metarhizium anisopliae and the acridid-specific M. acridum. Whole-genome analyses indicate that the genome structures of these two species are highly syntenic and suggest that the genus Metarhizium evolved from plant endophytes or pathogens. Both M. anisopliae and M. acridum have a strikingly larger proportion of genes encoding secreted proteins than other fungi, while ∼30% of these have no functionally characterized homologs, suggesting hitherto unsuspected interactions between fungal pathogens and insects. The analysis of transposase genes provided evidence of repeat-induced point mutations occurring in M. acridum but not in M. anisopliae. With the help of pathogen-host interaction gene database, ∼16% of Metarhizium genes were identified that are similar to experimentally verified genes involved in pathogenicity in other fungi, particularly plant pathogens. However, relative to M. acridum, M. anisopliae has evolved with many expanded gene families of proteases, chitinases, cytochrome P450s, polyketide synthases, and nonribosomal peptide synthetases for cuticle-degradation, detoxification, and toxin biosynthesis that may facilitate its ability to adapt to heterogenous environments. Transcriptional analysis of both fungi during early infection processes provided further insights into the genes and pathways involved in infectivity and specificity. Of particular note, M. acridum transcribed distinct G-protein coupled receptors on cuticles from locusts (the natural hosts) and cockroaches, whereas M. anisopliae transcribed the same receptor on both hosts. This study will facilitate the identification of virulence genes and the development of improved biocontrol strains with customized properties
- …