4,292 research outputs found

    Characterization of Machinability and Environmental Impact of Cryogenic Turning of Ti-6Al-4V

    Get PDF
    Abstract Titanium alloys are widely used in aerospace applications due to their physical and mechanical properties. However, their poor machinability remains the main challenge to improve the productivity and the surface quality. Cryogenic machining recently gained interest as a clean and economical cooling technique. It becomes a promising candidate for applications that involve aggressive metal removal, especially for hard-to-cut material. This research provides insight into the cryogenic machining performance compared to flood machining in terms of its effect on tool life, surface quality, cutting forces and environmental impact. For such analysis, turning tests of Ti-6Al-4V using cryogenic and flood technologies were conducted at different cutting conditions. Life cycle analysis was conducted using the Eco-indicator method to compare the environmental impact of each technology. The cryogenic technology significantly improved the process environmental performance in addition to enhancing the tool life and surface quality compared to flood, hence improved the process productivity

    Novel Method for Improving the Capacity of Optical MIMO System Using MGDM

    Get PDF
    In current local area networks, multimode fibers (MMFs), primarily graded index (GI) MMFs, are the main types of fibers employed for data communications. Due to their enormous bandwidth, it is considered that they are the main channel medium that can offer broadband multiservices using optical multiplexing techniques. Amongst these, mode group diversity multiplexing (MGDM) has been proposed as a way to integrate various services over an MMF network by exciting different groups of modes that can be used as independent and parallel communication channels. In this paper, we study optical multiple-input–multiple-output (O-MIMO) systems using MGDM techniques while also optimizing the launching conditions of light at the fiber inputs and the spot size, radial offset, angular offset, wavelength, and the radii of the segment areas of the detectors. We propose a new approach based on the optimization of launching and detection conditions in order to increase the capacity of an O-MIMO link using the MGDM technique. We propose a (3 timestimes 3) O-MIMO system, where our simulation results show significant improvement in GI MMFs' capacity compared with existing O-MIMO systems. Optical multiple-input-multiple-output multiplexing of parallel communication multichannels over a single multimode fiber network. Optical multiple-input-multiple-output multiplexing of parallel communication multichannels over a single multimode fiber network

    Sustainable machining of Ti-6Al-4V using cryogenic cooling: an optimized approach

    Get PDF
    Abstract Cryogenic machining is an effective, sustainable cooling approach in machining hard-to-cut materials. In this work, two multi-objective optimization techniques, namely; non-dominated sorting genetic algorithm, and grey relational analysis, were used to optimize the cutting performance during turning Ti-6Al-4V alloys under flood and cryogenic cooling. The machining performance was optimized in terms of surface roughness, material removal rate, tool performance and cutting forces. The optimal solutions, including cutting conditions and cooling technique, were determined for different machining strategies (i.e. roughing, finishing, and productivity). It was found that cryogenic cooling offers better cutting performance with a higher optimization index than flood approach

    Water status and yield response to deficit irrigation and fertilization of three olive oil cultivars under the semi-arid conditions of Tunisia

    Get PDF
    Sustainability of olive production is possible by adopting the modern techniques of irrigation and fertilization. In Tunisia, olive trees are usually cultivated in poor soils, under semi-arid conditions characterized by water scarcity. This study investigated the effects of different water supply and fertilization on leaf water status and crop yield of three different olive oil varieties cultivated in central Tunisia, during four experimental seasons (2014-2017). Three treatments were examined: trees conducted under rainfed conditions (TRF), which represented the control treatment, trees irrigated with 50% ETc (T50) and, finally, trees irrigated with 50% ETc and with additional fertilization (T50F). Leaf water content and potential, yield and water use efficiency have been monitored on three different varieties, Chetoui, Chemlali, and Koroneiki, which are quite typical in the considered region. For all the growing seasons, midday leaf water potentials were measured from April to September. Midday leaf water potentials (MLWP) were generally higher for the two irrigated treatments (T50 and T50F) than for non-irrigated trees (TRF). As the season proceeded, MLWPs tended to decrease during summer for all the treatments and varieties. The lowest values were observed for the non-irrigated trees, varying between -3.25 MPa to -4.75 MPa. Relative leaf water content followed the same trends of midday leaf water potentials. Chetoui showed the lowest yield, which did not exceed 1530 Kg/(ha year), even for irrigated and fertilized trees. On the other hand, the yields of Chemlali and Koroneiki, cumulated in the four years, reached the maximum value of about 20 tons/ha. For these two varieties, the cumulated yield obtained in the control treatment (TRF) resulted significantly lower than the corresponding of the other two treatments (T50 and T50F). The highest irrigation water use efficiency (WUE) was estimated for Chemlali (T50) and (TRF). WUE was equal to 1.22 Kg/m3 for Koroneiki under fertigated treatment (T50F). Application of the only water supply (50% ETc) or associated with fertilizer improved the tree water status and increased the productivity of Chemlali and Koroneiki varieties

    Steady Flow over a Rotating Disk in Porous Medium with Heat Transfer

    Get PDF
    The steady flow of an incompressible viscous fluid above an infinite rotating disk in a porous medium is studied with heat transfer. Numerical solutions of the nonlinear governing equations which govern the hydrodynamics and energy transfer are obtained. The effect of the porosity of the medium on the velocity and temperature distributions is considered

    Transsulfuration pathway thiols and methylated arginines: the hunter community study

    Get PDF
    Background: Serum homocysteine, when studied singly, has been reported to be positively associated both with the endogenous nitric oxide synthase inhibitor asymmetric dimethylarginine [ADMA, via inhibition of dimethylarginine dimethylaminohydrolase (DDAH) activity] and with symmetric dimethylarginine (SDMA). We investigated combined associations between transsulfuration pathway thiols, including homocysteine, and serum ADMA and SDMA concentrations at population level. Methods: Data on clinical and demographic characteristics, medication exposure, C-reactive protein, serum ADMA and SDMA (LC-MS/MS), and thiols (homocysteine, cysteine, taurine, glutamylcysteine, total glutathione, and cysteinylglycine; capillary electrophoresis) were collected from a sample of the Hunter Community Study on human ageing [n = 498, median age (IQR) = 64 (60–70) years]. Results: Regression analysis showed that: a) age (P = 0.001), gender (P = 0.03), lower estimated glomerular filtration rate (eGFR, P = 0.08), body mass index (P = 0.008), treatment with beta-blockers (P = 0.03), homocysteine (P = 0.02), and glutamylcysteine (P = 0.003) were independently associated with higher ADMA concentrations; and b) age (P = 0.001), absence of diabetes (P = 0.001), lower body mass index (P = 0.01), lower eGFR (P&lt;0.001), cysteine (P = 0.007), and glutamylcysteine (P&lt;0.001) were independently associated with higher SDMA concentrations. No significant associations were observed between methylated arginines and either glutathione or taurine concentrations. Conclusions: After adjusting for clinical, demographic, biochemical, and pharmacological confounders the combined assessment of transsulfuration pathway thiols shows that glutamylcysteine has the strongest and positive independent associations with ADMA and SDMA. Whether this reflects a direct effect of glutamylcysteine on DDAH activity (for ADMA) and/or cationic amino acid transport requires further investigations.</br

    Synthesis of green thermo-responsive amphoteric terpolymer functionalized silica nanocomposite derived from waste vegetable oil triglycerides for enhanced oil recovery (EOR)

    Get PDF
    Despite the high efficiency of polymer flooding as a chemical enhanced oil recovery (CEOR) technique, the low thermal stability and poor salt resistance of widely applied partially hydrolyzed polyacrylamide (HPAM) limited the application of this technique in oil reservoirs at harsh reservoir conditions of high–temperature and high–salinity (HTHS). These inadequacies of HPAM, result in the urge for an environmentally friendly polymer with good viscosifying properties and a substantial effect on mobility ratio at HTHS reservoir conditions. In this research, a high oleic acid waste vegetable oil (WVO) is utilized to synthesize a novel environmentally benign, thermo-responsive amphoteric nanocomposite for EOR applications at HTHS reservoir conditions. A green route transesterification reaction has been utilized to synthesize a novel thermo-sensitive monomer from WVO. The existence of unsaturated fatty acids isolated double bonds and acryloyl functional groups in the synthesized monomer has been confirmed using different characterization methods. The reactive acryloyl double bond in the synthesized monomer has been copolymerized with acrylamide, acrylacyloxyethyltrimethyl ammonium chloride, and 2-acrylamide-2-methylpropane sulfonic acid in presence of dimethylphenylvinylsilane via free radical emulsion polymerization. The synthesized nanocomposite has been characterized by FTIR, 1H NMR, SEM, EDX, TEM, and DLS. The thermal stability of the nanocomposite has been evaluated by TGA and DTA analysis. The results indicated that nanocomposite solution exhibited a pouncing thermo-thickening behaviour and superior viscosifying properties even at an ultra-low polymer concentration of 0.04 wt.% as the temperature increased from 25 to 100 °C, with increasing salinity from 10,000 to 230,000 ppm as well as salt-free solutions. Flooding experiments demonstrated that the oil recovery factor reached 15.4 ± 0.1% using low nanocomposite concentrations of 0.04 wt.%, 22.6 ± 0.3% using nanocomposite concentrations of 0.06 wt.% and 25 ± 0.2% using 0.1 wt.% nanocomposite concentrations evaluated under hostile conditions of 100 °C and salinity of about 230,000 ppm. This research offers a new direction for the synthesis of a novel green, high molecular weight thermo-responsive nanocomposite for EOR application at extremely harsh reservoir conditions via WVO valorization

    Halophytes as Forages

    Get PDF
    It is the chemical composition of the halophyte forages and the digestion process of these forages that matter. As the science gets more advanced and the information about these two points becomes clearer, the view of this information might modify our understanding to these processes. Then, some topics might be dropped, and others might be raised or become more obvious. However, the feeding of halophyte forages as per se has several drawbacks and therefore, they have to be fed in mixed rations, fortifying these rations with energy supplements
    • …
    corecore