399 research outputs found

    La cantidad de madera muerta y sus tasas de descomposición asociadas en reservas forestales y bosques manejados en el noroeste de Turquía

    Get PDF
    This study describes the state of coarse dead wood (CDW) in the Forest Reserve and the Managed Forest zones of northern conifer-broadleaved mixed forest. The results showed mean total CDW volumes in the ranges 30,05±11,06 m3/ha in the Forest Reserve (6,33±2,98% of the LW volume), and 9,31±2,84 m3/ha in the Managed Forest (1,96±0,84% of the LW volume). The total CDW volume was 3,22 times higher in the Forest Reserve than in the Managed Forest. The CDWlog1 and CDWsnag1 were the most abundant CDW decay classes, whilst CDWlog2 and CDWsnag2 were the lowest. Comparisons of ratios between the Managed Forest and the Forest Reserve with abundant decay classes CDWlog1 and CDWsnag1 indicated large differences. The CDWlog1 volume was 4,09 times higher, and the CDWsnag1 volume was 3,68 times greater in the Forest Reserve than in the Managed Forest. The ratio of different CWD classes in the Managed Forest to CWD classes in the Reserve Forest confirms the pattern. In both Managed and Reserve Forest zones there is balance between total CDWlogs and total CDWsnags, but the differences between total CDWlogs and total CDWsnags was not statistically significant. The total CDW volume was significantly dependent on the forest management system. The system influenced amount and diversity of CDW. In commercially managed forest the abundance and structure of CDW retained is a compromise between the needs of timber production and nature conservation.Este estudio describe el estado de la madera muerta en la zona de reserva forestal y zonas de bosques manejados de coníferas del norte de bosques mixtos de frondosas. Los resultados mostraron que la media total de los volúmenes de madera muerta es igual a 30,05 ± 11,06 m3 / ha en la Reserva Forestal (6,33 ± 2,98% del volumen de madera en pie), y 9,31 ± 2,84 m3 / ha en los bosques manejados (1,96 ± 0,84% del volumen de LW). El volumen total de madera muerta fue de 3,22 veces mayor en la Reserva Forestal de que en el bosque administrado. Las clases de decaimiento de madera muerta más abundantes eran CDWlog1 y CDWsnag1, mientras que CDWlog2 y CDWsnag2 fueron los menos abundantes. Las comparaciones de las proporciones entre el bosque manejado y la Reserva Forestal con las clases de decaimiento más abundantes (CDWlog1 y CDWsnag1) indican grandes diferencias ente las dos zonas. El volumen CDWlog1 fue 4,09 veces mayor, y el volumen CDWsnag1 fue 3,68 veces mayor en la Reserva Forestal de que en el bosque manejado. La relación de las diferentes clases de decaimiento entre los bosques manejados y la Reserva Forestal confirma el patrón. En ambos casos, bosque manejado y zonas de reserva forestal, existe un equilibrio entre CDWlogs total y CDWsnags total, pero las diferencias entre CDWlogs total y CDWsnags total no fue estadísticamente significativa. El volumen total de madera muerta depende significativamente del sistema de gestión forestal. El sistema de manejo influye sobre la cantidad y diversidad de madera muerta. En una gestión comercial de los bosques, la abundancia y estructura de madera muerta presente es un compromiso entre las necesidades de la producción de madera y la conservación de la naturaleza

    The accumulation of heavy metals (Cd, Pb, Hg, Cr) and their state in phytoplanktonic algae and zooplanktonic organisms in Beysehir Lake and Mogan Lake, Turkey

    Get PDF
    Beysehir and Mogan Lakes are two shallow Lakes that are under environmental protection status. Phytoplanktonic dominant algae determined in Beysehir Lake were Oscillatoria sp., Cladophora sp.,Achnanthes sp., Gomphonema sp., Navicula sp., Cosmarium sp., Cymbella sp., Fragilaria sp., Oocystis sp., Spirogyra sp., Diatomae sp., Microcystis sp. and Staurastrum sp. While in Mogan Lake, Spirogyra sp., Zygnema sp., Euglena sp., Achnanthes sp., Cymbella sp., Fragilaria sp. Navicula sp., Scenedesmus sp., Oocystis sp., Synedra sp., Oscillatoria sp., Chlorella sp., Cosmarium sp. and Nitzshia sp. were determined. Zooplanktonic dominant organisms determined in Beysehir Lake were Eudiaptomus drieshi, Daphnia longispina and Brachionus calyciforus while Arctodiaptomus sp., Keratella quadrata, Filinia longiseta and Diaphanosoma lacustris were determined in Mogan Lake. Accumulation of heavy metals (Cd, Pb, Hg and Cr) in the water and plankton of Beysehir and Mogan Lakes was studiedseasonally, from April 2000 to December 2004. Higher concentration with all heavy metals was recorded in plankton. Mercury (Hg) was found in lowest and lead (Pb) in the highest correlation; however, the concentration of each metal varied seasonally. In addition, the seasonal changes inphytoplankton and zooplankton populations and species abundance were also determined. Some physical-chemical parameters of water and their correlation with heavy metals were also examined

    Euler-Lagrange equations for composition functionals in calculus of variations on time scales

    Full text link
    In this paper we consider the problem of the calculus of variations for a functional which is the composition of a certain scalar function HH with the delta integral of a vector valued field ff, i.e., of the form H(abf(t,xσ(t),xΔ(t))Δt)H(\int_{a}^{b}f(t,x^{\sigma}(t),x^{\Delta}(t))\Delta t). Euler-Lagrange equations, natural boundary conditions for such problems as well as a necessary optimality condition for isoperimetric problems, on a general time scale, are given. A number of corollaries are obtained, and several examples illustrating the new results are discussed in detail.Comment: Submitted 10-May-2009 to Discrete and Continuous Dynamical Systems (DCDS-B); revised 10-March-2010; accepted 04-July-201

    Improved Bounds on Quantum Learning Algorithms

    Full text link
    In this article we give several new results on the complexity of algorithms that learn Boolean functions from quantum queries and quantum examples. Hunziker et al. conjectured that for any class C of Boolean functions, the number of quantum black-box queries which are required to exactly identify an unknown function from C is O(logCγ^C)O(\frac{\log |C|}{\sqrt{{\hat{\gamma}}^{C}}}), where γ^C\hat{\gamma}^{C} is a combinatorial parameter of the class C. We essentially resolve this conjecture in the affirmative by giving a quantum algorithm that, for any class C, identifies any unknown function from C using O(logCloglogCγ^C)O(\frac{\log |C| \log \log |C|}{\sqrt{{\hat{\gamma}}^{C}}}) quantum black-box queries. We consider a range of natural problems intermediate between the exact learning problem (in which the learner must obtain all bits of information about the black-box function) and the usual problem of computing a predicate (in which the learner must obtain only one bit of information about the black-box function). We give positive and negative results on when the quantum and classical query complexities of these intermediate problems are polynomially related to each other. Finally, we improve the known lower bounds on the number of quantum examples (as opposed to quantum black-box queries) required for (ϵ,δ)(\epsilon,\delta)-PAC learning any concept class of Vapnik-Chervonenkis dimension d over the domain {0,1}n\{0,1\}^n from Ω(dn)\Omega(\frac{d}{n}) to Ω(1ϵlog1δ+d+dϵ)\Omega(\frac{1}{\epsilon}\log \frac{1}{\delta}+d+\frac{\sqrt{d}}{\epsilon}). This new lower bound comes closer to matching known upper bounds for classical PAC learning.Comment: Minor corrections. 18 pages. To appear in Quantum Information Processing. Requires: algorithm.sty, algorithmic.sty to buil

    Green University and academic performance: An empirical study on UI GreenMetric and World University Rankings

    Get PDF
    The role of higher education institutions in promoting environmental sustainability is not limited to research activities but also covers improving their campus infrastructure into a more environment-friendly setting as well as updating their curricula to include courses on environment and sustainability. The contemporary concept of ‘green university’ has been embraced by an increasing number of universities and attracted attention from scholars all over the world. The current study aims to contribute to the recent research stream on green universities by disclosing the relationship between academic performances of the universities and ‘being green’. For this purpose, the current research tests (i) whether sustainability relates to the academic performances of universities, (ii) whether the relationship (if it exists) is valid when the academic scores are aggregated to a composite score, (iii) whether the relationship (if it exists) is contingent upon the scores of environmental performance at the country level and (iv) whether the relationship (if it exists) holds for out-of-sample estimations. Utilizing the sustainability scores of the universities published by UI GreenMetric and four major academic ranking systems, the findings of the current research support the earlier discussions on the importance of the environmental sustainability policies implemented by university managements. The results reveal that being green has a reflection on the university rankings, and the environmental sustainability can serve as a competitive advantage for the world universities

    Visibility graphs of fractional Wu-Baleanu time series

    Full text link
    [EN] We study time series generated by the parametric family of fractional discrete maps introduced by Wu and Baleanu, presenting an alternative way of introducing these maps. For the values of the parameters that yield chaotic time series, we have studied the Shannon entropy of the degree distribution of the natural and horizontal visibility graphs associated to these series. In these cases, the degree distribution can be fitted with a power law. We have also compared the Shannon entropy and the exponent of the power law fitting for the different values of the fractionary exponent and the scaling factor of the model. Our results illustrate a connection between the fractionary exponent and the scaling factor of the maps, with the respect to the onset of the chaos.J.A. Conejero is supported Ministerio de Economia y Competitividad Grant Project MTM2016-75963-P. Carlos Lizama is supported by CONICYT, under Fondecyt Grant number 1180041. Cristobal Rodero-Gomez is funded by European Commission H2020 research and Innovation programme under the Marie Sklodowska-Curie grant agreement No. 764738.Conejero, JA.; Lizama, C.; Mira-Iglesias, A.; Rodero-Gómez, C. (2019). Visibility graphs of fractional Wu-Baleanu time series. The Journal of Difference Equations and Applications. 25(9-10):1321-1331. https://doi.org/10.1080/10236198.2019.1619714S13211331259-10Anand, K., & Bianconi, G. (2009). Entropy measures for networks: Toward an information theory of complex topologies. Physical Review E, 80(4). doi:10.1103/physreve.80.045102Barabási, A.-L., & Albert, R. (1999). Emergence of Scaling in Random Networks. Science, 286(5439), 509-512. doi:10.1126/science.286.5439.509Brzeziński, D. W. (2017). Comparison of Fractional Order Derivatives Computational Accuracy - Right Hand vs Left Hand Definition. Applied Mathematics and Nonlinear Sciences, 2(1), 237-248. doi:10.21042/amns.2017.1.00020Brzeziński, D. W. (2018). Review of numerical methods for NumILPT with computational accuracy assessment for fractional calculus. Applied Mathematics and Nonlinear Sciences, 3(2), 487-502. doi:10.2478/amns.2018.2.00038DONNER, R. V., SMALL, M., DONGES, J. F., MARWAN, N., ZOU, Y., XIANG, R., & KURTHS, J. (2011). RECURRENCE-BASED TIME SERIES ANALYSIS BY MEANS OF COMPLEX NETWORK METHODS. International Journal of Bifurcation and Chaos, 21(04), 1019-1046. doi:10.1142/s0218127411029021Edelman, M. (2015). On the fractional Eulerian numbers and equivalence of maps with long term power-law memory (integral Volterra equations of the second kind) to Grünvald-Letnikov fractional difference (differential) equations. Chaos: An Interdisciplinary Journal of Nonlinear Science, 25(7), 073103. doi:10.1063/1.4922834Edelman, M. (2018). On stability of fixed points and chaos in fractional systems. Chaos: An Interdisciplinary Journal of Nonlinear Science, 28(2), 023112. doi:10.1063/1.5016437Gao, Z.-K., Small, M., & Kurths, J. (2016). Complex network analysis of time series. EPL (Europhysics Letters), 116(5), 50001. doi:10.1209/0295-5075/116/50001Iacovacci, J., & Lacasa, L. (2016). Sequential visibility-graph motifs. Physical Review E, 93(4). doi:10.1103/physreve.93.042309Indahl, U. G., Naes, T., & Liland, K. H. (2018). A similarity index for comparing coupled matrices. Journal of Chemometrics, 32(10), e3049. doi:10.1002/cem.3049Kantz, H., & Schreiber, T. (2003). Nonlinear Time Series Analysis. doi:10.1017/cbo9780511755798Lacasa, L., & Iacovacci, J. (2017). Visibility graphs of random scalar fields and spatial data. Physical Review E, 96(1). doi:10.1103/physreve.96.012318Lacasa, L., Luque, B., Ballesteros, F., Luque, J., & Nuño, J. C. (2008). From time series to complex networks: The visibility graph. Proceedings of the National Academy of Sciences, 105(13), 4972-4975. doi:10.1073/pnas.0709247105Lizama, C. (2015). lp-maximal regularity for fractional difference equations on UMD spaces. Mathematische Nachrichten, 288(17-18), 2079-2092. doi:10.1002/mana.201400326Lizama, C. (2017). The Poisson distribution, abstract fractional difference equations, and stability. Proceedings of the American Mathematical Society, 145(9), 3809-3827. doi:10.1090/proc/12895Luque, B., Lacasa, L., Ballesteros, F., & Luque, J. (2009). Horizontal visibility graphs: Exact results for random time series. Physical Review E, 80(4). doi:10.1103/physreve.80.046103Luque, B., Lacasa, L., Ballesteros, F. J., & Robledo, A. (2011). Feigenbaum Graphs: A Complex Network Perspective of Chaos. PLoS ONE, 6(9), e22411. doi:10.1371/journal.pone.0022411Luque, B., Lacasa, L., & Robledo, A. (2012). Feigenbaum graphs at the onset of chaos. Physics Letters A, 376(47-48), 3625-3629. doi:10.1016/j.physleta.2012.10.050May, R. M. (1976). Simple mathematical models with very complicated dynamics. Nature, 261(5560), 459-467. doi:10.1038/261459a0Núñez, Á. M., Luque, B., Lacasa, L., Gómez, J. P., & Robledo, A. (2013). Horizontal visibility graphs generated by type-I intermittency. Physical Review E, 87(5). doi:10.1103/physreve.87.052801Ravetti, M. G., Carpi, L. C., Gonçalves, B. A., Frery, A. C., & Rosso, O. A. (2014). Distinguishing Noise from Chaos: Objective versus Subjective Criteria Using Horizontal Visibility Graph. PLoS ONE, 9(9), e108004. doi:10.1371/journal.pone.0108004Robledo, A. (2013). Generalized Statistical Mechanics at the Onset of Chaos. Entropy, 15(12), 5178-5222. doi:10.3390/e15125178Shannon, C. E. (1948). A Mathematical Theory of Communication. Bell System Technical Journal, 27(3), 379-423. doi:10.1002/j.1538-7305.1948.tb01338.xSong, C., Havlin, S., & Makse, H. A. (2006). Origins of fractality in the growth of complex networks. Nature Physics, 2(4), 275-281. doi:10.1038/nphys266West, J., Lacasa, L., Severini, S., & Teschendorff, A. (2012). Approximate entropy of network parameters. Physical Review E, 85(4). doi:10.1103/physreve.85.046111Wu, G.-C., & Baleanu, D. (2013). Discrete fractional logistic map and its chaos. Nonlinear Dynamics, 75(1-2), 283-287. doi:10.1007/s11071-013-1065-7Wu, G.-C., & Baleanu, D. (2014). Discrete chaos in fractional delayed logistic maps. Nonlinear Dynamics, 80(4), 1697-1703. doi:10.1007/s11071-014-1250-3Zhang, J., & Small, M. (2006). Complex Network from Pseudoperiodic Time Series: Topology versus Dynamics. Physical Review Letters, 96(23). doi:10.1103/physrevlett.96.23870

    A novel lineage of the Capra genus discovered in the Taurus Mountains of Turkey using ancient genomics

    Get PDF
    Direkli Cave, located in the Taurus Mountains of southern Turkey, was occupied by Late Epipaleolithic hunters-gatherers for the seasonal hunting and processing of game including large numbers of wild goats. We report genomic data from new and published Capra specimens from Direkli Cave and, supplemented with historic genomes from multiple Capra species, find a novel lineage best represented by a ~14,000 year old 2.59 X genome sequenced from specimen Direkli4. This newly discovered Capra lineage is a sister clade to the Caucasian tur species (Capra cylindricornis and Capra caucasica), both now limited to the Caucasus region. We identify genomic regions introgressed in domestic goats with high affinity to Direkli4, and find that West Eurasian domestic goats in the past, but not those today, appear enriched for Direkli4-specific alleles at a genome-wide level. This forgotten 'Taurasian tur' likely survived Late Pleistocene climatic change in a Taurus Mountain refuge and its genomic fate is unknown
    corecore