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1 Introduction
In this work, using variational methods and critical point theory, we study the fractional
difference boundary value problem

⎧⎨
⎩T�ν

t–(t�ν
ν–x(t)) = f (x(t + ν – )), t ∈ [,T]N ,

x(ν – ) = [t�ν
ν–x(t)] t=T = ,

(.)

where ν ∈ (, ), t�ν
ν– and T�ν

t are, respectively, the left fractional difference and the right
fractional difference operators, t ∈ [,T]N := {, , , . . . ,T}, and f :R →R is continuous.
Fractional calculus has a long history, and there is renewed interest in the study of both

fractional calculus and fractional difference equations. In [, ], the authors discussed
properties of the generalized falling function, a corresponding power rule for fractional
delta-operators and the commutativity of fractional sums. A number of papers have ap-
peared which build the theoretical foundations of discrete fractional calculus (for more
details, we refer the reader to [–] and the references therein).
Atici and Eloe [] considered the existence of positive solutions for the following two-

point boundary value problem for a nonlinear finite fractional difference equation:

⎧⎨
⎩–�νy(t) = f (t + ν – , y(t + ν – )), t = , , . . . ,b + ,

y(ν – ) = , y(ν + b + ) = .
(.)

In [], the authors used the mountain pass theorem, a linking theorem, and Clark’s the-
orem to establish the existence of multiple solutions for a fractional difference boundary
value problem with a parameter. Under some suitable assumptions, they obtained some
results which ensure the existence of a precise interval of parameters for which the prob-
lem admits multiple solutions.We note that there are many papers in the literature [–]
which discuss discrete problems via variational and critical point theory.
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In [], Tian and Henderson studied the nth order nonlinear difference equation

�n(r(t – n)�nx(t – n)
)
+ f

(
t,x(t)

)
= , t ∈ Z, (.)

and established some existence results for anti-periodic solutions under various assump-
tions on the nonlinearity. In [], Ye andTang considered the second-order discreteHamil-
tonian system

�u(t – ) + d(t)
∣∣u(t)∣∣μ–u(t) +∇H

(
t,u(t)

)
= , ∀t ∈ Z,

and obtained an existence theorem for a nonzero T-periodic solution.
In the literature on discrete problem via critical point theory, the authors are interested

in the existence of at least one solution or infinitely many solutions. The existence of a
unique solution is not usually studied. In this paper, using Browder’s theorem, first we
present a uniqueness result in Section . Then a linking theorem is used to establish exis-
tence. Finally, assuming an Ambrosetti-Rabinowitz type condition, we show that problem
(.) has many solutions if the nonlinearity is odd.

2 Preliminaries
For convenience, throughout this paper, we arrange

∑m
i=j x(i) =  for m < j. We present

some definitions and lemmas for discrete fractional operators.
For any integer β , let Nβ := {β ,β + ,β + , . . .} and t(ν) := �(t + )/�(t +  – ν), where t

and ν are determined by (.). We also appeal to the convention that if t +  – ν is a pole of
the gamma function and t +  is not a pole, then t(ν) = .

Definition . (see [, ]) The νth fractional sum of f for ν >  is defined by

�–ν
a f (t) =


�(ν)

t–ν∑
s=a

(t – s – )(ν–)f (s) for t ∈Na–ν . (.)

We also define the νth fractional difference for ν >  by �ν f (t) := �N�ν–Nf (t), where t ∈
Na+N–ν and N ∈N is chosen so that  ≤N –  < ν ≤N .

Definition . (see [, ]) Let f be any real-valued function and ν ∈ (, ). The left discrete
fractional difference and the right discrete fractional difference operators are, respectively,
defined as

t�ν
af (t) =�t�–(–ν)

a f (t)

=


�( – ν)
�

t+ν–∑
s=a

(t – s – )(–ν)f (s), t ≡ a – ν + (mod ),

b�ν
t f (t) = –�b�–(–ν)

t f (t)

=


�( – ν)
(–�)

b∑
s=t+–ν

(s – t – )(–ν)f (s), t ≡ b + ν – (mod ).

(.)
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Definition . Suppose that X is a Banach space and I : X → R is a functional defined
on X. For given x, y ∈ X, assume that

lim
ε→

I(x + εy) – I(x)
ε

(.)

exists. Then I is Gateaux differentiable at x, the limit in (.) is called the Gateaux differ-
ential of I at x in direction y, and is denoted by (I ′(x), y), i.e.,

(
I ′(x), y

)
= lim

ε→

I(x + εy) – I(x)
ε

. (.)

Definition . (see [, p.]) LetX be a reflexive real Banach space andX∗ its dual. The
operator L : X → X∗ is said to be demicontinuous if Lmaps strongly convergent sequences
in X to weakly convergent sequences in X∗.

Lemma . (Browder theorem, see [, Theorem ..]) Let X be a reflexive real Banach
space.Moreover, let L : X → X∗ be an operator satisfying the conditions

(i) L is bounded and demicontinuous,
(ii) L is coercive, i.e., lim‖x‖→∞ (L(x),x)

‖x‖ = +∞,
(iii) L is monotone on the space X , i.e., for all x, y ∈ X , we have

(
L(x) – L(y),x – y

) ≥ . (.)

Then the equation L(x) = f ∗ has at least one solution x ∈ X for every f ∗ ∈ X∗. If,moreover,
the inequality (.) is strict for all x, y ∈ X, x �= y, then the equation L(x) = f ∗ has precisely
one solution x ∈ X for all f ∗ ∈ X∗.

Definition . (see [–]) Let X be a real Banach space, I ∈ C(X,R) and c ∈ R. We
say that I satisfies the (PS)c condition if any sequence {xn} ⊂ X such that I(xn) → c and
I ′(xn) →  as n→ ∞ has a convergent subsequence.

Lemma . (Linking theorem, Rabinowitz, see [–]) Let X = Y ⊕Z be a Banach space
with Z closed in X and dimY < ∞. Let ρ > r > , and let z ∈ Z be such that ‖z‖ = r. Define

M :=
{
u = y + λz : ‖u‖ ≤ ρ,λ ≥ , y ∈ Y

}
, N :=

{
u ∈ Z : ‖u‖ = r

}
,

M :=
{
u = y + λz : y ∈ Y ,‖u‖ = ρ and λ ≥ , or ‖u‖ ≤ ρ and λ = 

}
.

Let I ∈ C(X,R) be such that

b := inf
u∈N

I(u) > a := max
u∈M

I(u).

If I satisfies the (PS)c condition with

c := inf
γ∈�

max
u∈M

I
(
γ (u)

)
, where � :=

{
γ ∈ C(M,X) : γ |M = id

}
,

then c is a critical point of I .
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Definition . (see [–]) Let X be a real Banach space and I ∈ C(X,R). We say that I
satisfies the Cerami condition ((C) condition for short) if any sequence {xn} ⊂ X such that
I(xn) is bounded and ( + ‖xn‖)‖I ′(xn)‖ →  as n→ ∞, there exists a subsequence of {xn}
which is convergent in X.

Lemma . (Mountain pass theorem, see [–]) Let X be a real Banach space, and let
I ∈ C(X,R) satisfy the (C) condition. If I(θ ) =  and the following conditions hold:

(i) there are two positive constants ρ , η and a closed linear subspace X of X such that
codim X = l and I|X∩∂Bρ ≥ η, where Bρ is an open ball of radius ρ with center θ ;

(ii) there is a subspace X with dimX =m,m > l, such that

I(x)→ –∞ as ‖x‖ → ∞,x ∈ X.

Then I possesses at least m – l distinct pairs of nontrivial critical points.

In what follows, we establish the variational framework for (.). Let

X :=
{
x =

(
x(ν – ),x(ν), . . . ,x(ν + T – )

)+ : x(ν + i – ) ∈R, i = , , . . . ,T
}
. (.)

Then X is the T + -dimensional Hilbert space with the usual inner product and the usual
norm

(x, z) =
T+ν–∑
t=ν–

x(t)z(t), ‖x‖ =
(T+ν–∑

t=ν–

∣∣x(t)∣∣
) 



, x, z ∈ X. (.)

For α > , we define the α-norm on X: ‖x‖α = (
∑T+ν–

t=ν– |x(t)|α) 
α . Since dimX < ∞, we see

that there exist cα > , cα >  such that

cα‖x‖ ≤ ‖x‖α ≤ cα‖x‖ (.)

for all x belonging to X (or its subspace).
In view of [, (.)], we can define an energy functional on X by

I(x) =



T∑
t=–

(
t�ν

ν–x(t)
) – T∑

t=–

F
(
x(t + ν – )

)
, x ∈ X, (.)

where

F
(
x(t + ν – )

)
=

∫ x(t+ν–)


f (s) ds,

x(ν – ) = ,
[
t�ν

ν–x(t)
]
t=T =

–ν

�( – ν)

T+ν∑
s=ν–

(T + s – )(–ν–)x(s) = .

Clearly, I(θ ) = . Let

E :=
{
χ =

(
x(ν – ),x(ν – ), . . . ,x(ν + T)

)+
∈R

T+ : x(ν – ) = ,
[
t�ν

ν–x(t)
]
t=T = 

}
. (.)
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Then, from the boundary conditions of (.), it is easy to see that E is isomorphic to X. In
the following, when we say x ∈ X, we always imply that x can be extended to χ ∈ E if it is
necessary. Nowwe claim that if x = (x(ν –),x(ν), . . . ,x(ν +T –))+ ∈ X is a critical point of
I , then χ = (x(ν–),x(ν–), . . . ,x(ν+T))+ ∈ E is precisely a solution of (.). Indeed, since I
can be viewed as a continuously differentiable functional defined on the finite dimensional
Hilbert space X, the Fréchet derivative I ′(x) is zero if and only if ∂I(x)/∂x(i) =  for all
i = ν –,ν, . . . ,ν +T –. From the relation between the Fréchet derivative and the Gateaux
derivative, we obtain

(
I ′(x), y

)
= lim

ε→

I(x + εy) – I(x)
ε

=

ε

[



T∑
t=–

[(
t�ν

ν–
(
x(t) + εy(t)

)) – (
t�ν

ν–x(t)
)]

–
T∑

t=–

[
F
(
(x + εy)(t + ν – )

)
– F

(
x(t + ν – )

)]]

=
T∑

t=–
t�ν

ν–x(t)t�ν
ν–y(t) –

T∑
t=–

f
(
x(t + ν – )

)
y(t + ν – ). (.)

Therefore, in order to obtain the existence of solutions for (.), we only need to study the
existence of critical points of the energy functional I on X.
Next, noting Definition ., for t ∈ [–,T]N– , we let

t�ν
ν–x(t) =� 

�( – ν)

t–(–ν)∑
s=ν–

(t – s – )(–ν)x(s) := �z(t + ν – ). (.)

Then we have

z(ν – ) = ,

z(ν – ) =


�( – ν)

–(–ν)∑
s=ν–

(–s – )(–ν)x(s) = x(ν – ),

z(ν) =


�( – ν)

–(–ν)∑
s=ν–

( – s – )(–ν)x(s) = ( – ν)x(ν – ) + x(ν),

z(ν + ) =


�( – ν)

–(–ν)∑
s=ν–

( – s – )(–ν)x(s)

=
( – ν)( – ν)

!
x(ν – ) + ( – ν)x(ν) + x(ν + ),

...

z(ν + T – ) =


�( – ν)

T–(–ν)∑
s=ν–

(T – s – )(–ν)x(s)

=
(T – ν)(T –  – ν) · · · ( – ν)

T !
x(ν – )

+
(T –  – ν)(T –  – ν) · · · ( – ν)

(T – )!
x(ν) + · · ·

+ ( – ν)x(ν + T – ) + x(ν + T – ),
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i.e., z = Bx, where z = (z(ν – ), z(ν), . . . , z(ν + T – ))+, x = (x(ν – ),x(ν), . . . ,x(ν + T – ))+,

B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

   · · · 
 – ν   · · · 

(–ν)(–ν)
!  – ν  · · · 
...

...
...

...
...

(T–ν)(T––ν)···(–ν)
T !

(T––ν)(T––ν)···(–ν)
(T–)! · · · · · · 

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(T+)×(T+)

.

Clearly, (B–)+B– is a positive definite matrix. All the eigenvalues of (B–)+B– are posi-
tive. Let λmin and λmax denote respectively the minimum and the maximum eigenvalues
of (B–)+B–. Since x = B–z, we have

λmin‖z‖ ≤ ‖x‖ = (
z+

(
B–)+,B–z

) ≤ λmax‖z‖. (.)

Next, let

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

 –  · · ·  
–  – · · ·  
 –  · · ·  
...

...
...

...
...

...
   · · ·  –
   · · · – 

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(T+)×(T+)

.

By direct verification, we see that A is a positive definite matrix. Let η, . . . ,ηT+ be the or-
thonormal eigenvectors corresponding to the eigenvalues λ, . . . ,λT+ of A, where  < λ <
· · · < λT+. Clearly,X := span{η, . . . ,ηT+}. Let Y := span{η, . . . ,ηl},Z := span{ηl+, . . . ,ηT+},
for l ∈ [,T + ]N . Then X = Y ⊕ Z.

3 Main results
Now we state our main results and give their proof. For convenience, we list assumptions
on f and F :
(H) f (θ ) �= , and there is a constant c such that |f (x) – f (y)| ≤ c|x – y|, ∀x, y ∈ X .
(H) There exist a constant d >  and μ ∈ (, ) such that lim sup|x|→

F(x)
|x|μ < d.

(H) λl
λmin

x ≤ ∫ x
 f (s) ds for all x ∈R.

(H) There exist α >  and R >  such that

 < α

∫ x


f (s) ds≤ xf (x) for |x| > R.

(H) There is a constant α >  such that lim inf|x|→∞ F(x)
|x|α > .

(H) There is γ >  such that

lim inf|x|→∞
f (x)x – F(x)

|x|γ > .

(H) f (–x) + f (x) = , ∀x ∈R.

http://www.advancesindifferenceequations.com/content/2013/1/319
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Theorem . Let (H) hold. Then (.) has precisely one solution for c ∈ (, λ
λmax

).

Proof We shall apply Lemma . to prove the result. From (.), we define the operator

(
L(x), y

)
=

T∑
t=–

t�ν
ν–x(t)t�ν

ν–y(t) –
T∑

t=–

f
(
x(t + ν – )

)
y(t + ν – ), ∀x, y ∈ X. (.)

Clearly, if for all y ∈ X, there exists x ∈ X such that (L(x), y) = , then x is a solution of
(.). Let

(
L(x), y

)
=

T∑
t=–

t�ν
ν–x(t)t�ν

ν–y(t),

(
L(x), y

)
=

T∑
t=–

f
(
x(t + ν – )

)
y(t + ν – ), ∀x, y ∈ X.

We sketch the properties of L and L. It is clear that L is a linear operator, and further-
more, L is bounded. Indeed, the Cauchy-Schwarz inequality enables us to obtain, notice
(.) and (.),

∣∣(L(x), y)∣∣ ≤
T∑

t=–

∣∣t�ν
ν–x(t)

∣∣∣∣t�ν
ν–y(t)

∣∣

≤
( T∑

t=–

∣∣t�ν
ν–x(t)

∣∣)


( T∑

t=–

∣∣t�ν
ν–y(t)

∣∣)



≤ λT+

λmin
‖x‖‖y‖ < ∞, x, y ∈ X. (.)

Consequently, L is continuous on X. Next, we show that L is bounded and continuous.
Let y = θ in (H) and |f (θ )| = c > . Then we have from (H)

∣∣f (x)∣∣ ≤ c|x| + c, ∀x ∈ X. (.)

From (.), the definition of L, and the Cauchy-Schwarz inequality, we obtain

∣∣(L(x), y)∣∣ ≤
T∑
t=

∣∣f (x(t + ν – )
)∣∣∣∣y(t + ν – )

∣∣

≤
T∑
t=

(
c
∣∣x(t + ν – )

∣∣ + c
)∣∣y(t + ν – )

∣∣
≤ c‖x‖‖y‖ + c

√
T + ‖y‖ <∞, ∀x, y ∈ X, (.)

∣∣(L(x) – L(x), y
)∣∣ ≤

T∑
t=

∣∣f (x(t + ν – )
)
– f

(
x(t + ν – )

)∣∣∣∣y(t + ν – )
∣∣

≤
T∑
t=

c
∣∣x(t + ν – ) – x(t + ν – )

∣∣∣∣y(t + ν – )
∣∣

≤ c‖x – x‖‖y‖, ∀x, y ∈ X. (.)

http://www.advancesindifferenceequations.com/content/2013/1/319
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Therefore, L is bounded and continuous, as required. Hence, L is bounded and continu-
ous, so demicontinuous.
From (.), notice (.) and (.), we see

(
L(x),x

)
=

T∑
t=–

(
t�ν

ν–x(t)
) – T∑

t=–

f
(
x(t + ν – )

)
x(t + ν – )

=
T–∑
t=–

(�z(t + ν – )
) – T∑

t=

f
(
x(t + ν – )

)
x(t + ν – )

≥ λ

λmax
‖x‖ –

T∑
t=

(
c
∣∣x(t + ν – )

∣∣ + c
)∣∣x(t + ν – )

∣∣
≥

(
λ

λmax
– c

)
‖x‖ – c

√
T + ‖x‖. (.)

Therefore, lim‖x‖→∞ (L(x),x)
‖x‖ = +∞, i.e., L is coercive on X.

Finally, we prove that L is strictly monotone. Indeed, from (H), we have

(
L(x) – L(y),x – y

) ≥
T∑

t=–

(
t�ν

ν–x(t) – t�ν
ν–y(t)

)

–
T∑
t=

∣∣f (x(t + ν – )
)
– f

(
y(t + ν – )

)∣∣∣∣x(t + ν – ) – y(t + ν – )
∣∣

≥ λ

λmax
‖x – y‖ – c‖x – y‖ > , for x, y ∈ X and x �= y. (.)

All the conditions of Lemma . are satisfied, as claimed. Hence, (.) has precisely one
solution. This completes the proof. �

Theorem . Let (H)-(H) hold. Then (.) has at least one solution.

Proof From (H), there exists δ >  with

F(x)≤ d|x|μ for |x| ≤ δ. (.)

Thus, for x ∈ Z with ‖x‖ ≤ δ, it follows from the Hölder inequality that

I(x) =



T∑
t=–

(
t�ν

ν–x(t)
) – T∑

t=–

F
(
x(t + ν – )

)

=



T–∑
t=–

(
�z(t + ν – )

) – T∑
t=

F
(
x(t + ν – )

)

≥ λl+


‖z‖ –

T∑
t=

d
∣∣x(t + ν – )

∣∣μ

≥ λl+

λmax
‖x‖ – d

( T∑
t=

∣∣x(t + ν – )
∣∣)

μ

( T∑

t=



)–μ


=
λl+

λmax
‖x‖ – d(T + )–

μ
 ‖x‖μ. (.)

http://www.advancesindifferenceequations.com/content/2013/1/319
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By virtue of the inequality  < μ < , there exists r >  such that

b := inf‖x‖=r,x∈Z I(x) > . (.)

From (H), for x ∈ Y , we see

I(x) =



T∑
t=–

(
t�ν

ν–x(t)
) – T∑

t=–

F
(
x(t + ν – )

)

=



T–∑
t=–

(
�z(t + ν – )

) – T∑
t=

F
(
x(t + ν – )

)

≤ λl

λmin
‖x‖ –

T∑
t=

F
(
x(t + ν – )

)

=
T∑
t=

[
λl

λmin
x(t + ν – ) – F

(
x(t + ν – )

)] ≤ . (.)

From (H), we see that there exist c, c >  such that

∫ x


f (s) ds ≥ c|x|α – c, ∀x ∈ R. (.)

Hence, for x ∈ X, we find

I(x) =



T∑
t=–

(
t�ν

ν–x(t)
) – T∑

t=–

F
(
x(t + ν – )

)

=



T–∑
t=–

(
�z(t + ν – )

) – T∑
t=

F
(
x(t + ν – )

)

≤ λT+

λmin
‖x‖ – c

T∑
t=

∣∣x(t + ν – )
∣∣α + c(T + ). (.)

Set z := r ηl+
‖ηl+‖ with r >  is given in (.). For Y ⊕Rz ⊂ X, (.) holds true. This, together

with (.), implies

I(x)≤ λT+

λmin
‖x‖ – ccαα‖x‖α + c(T + ).

Since α > , we obtain

lim
‖x‖→∞,x∈Y⊕Rz

I(x) = –∞. (.)

Define

M :=
{
x = y + λz : ‖x‖ ≤ ρ,λ ≥ , y ∈ Y

}
,

M :=
{
x = y + λz : y ∈ Y ,‖x‖ = ρ and λ ≥ , or ‖x‖ ≤ ρ and λ = 

}
.
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Since z ∈ Z and then I(z) ≥ b > , (.) and (.) guarantee that there is ρ > r such that

a := max
x∈M

I(x)≤ .

It remains to prove that I satisfies the (PS)c condition. This will be the case if we show
that any sequence {xn}∞n= ⊂ X such that

d := sup
n

I(xn) < ∞, I ′(xn) → ,

contains a convergent subsequence. Note that dimX < ∞, so we only need to show the
boundedness of {xn}∞n=. Take β >  such that β– ∈ (,α) for n large enough, and (H),
(.) and (.) enable us to obtain

d + ‖xn‖ ≥ I(xn) –

β

(
I ′(xn),xn

)

=
(


–


β

) T∑
t=–

(
t�ν

ν–xn(t)
)

+
T∑

t=–

(

β
f
(
xn(t + ν – )

)
xn(t + ν – ) – F

(
xn(t + ν – )

))

≥
(


–


β

)
λ

λmax
‖xn‖ +

T∑
t=

(
α

β
– 

)
F
(
xn(t + ν – )

)

≥
(


–


β

)
λ

λmax
‖xn‖ +

T∑
t=

(
α

β
– 

)(
c

∣∣xn(t + ν – )
∣∣α – c

)

≥
(


–


β

)
λ

λmax
‖xn‖ +

(
α

β
– 

)
ccαα‖xn‖α –

(
α

β
– 

)
(T + )c.

Since α >  and ( α
β
– ) > , we see that {xn}∞n= is bounded.

Thus the functional I satisfies all the conditions of Lemma ., and then I has a critical
point, and (.) has at least one solution. This completes the proof. �

Theorem . Let (H), (H)-(H) hold. Then (.) has at least m – l solutions.

Proof We shall utilize Lemma . to prove the result. If X = Z = span{ηl+, . . . ,ηT+}, we
see codim X = l. From (H), noting (.), we can take ρ = (ddλmaxλ

–
l+(T + )–

μ
 )


–μ so

that ρ ≤ δ, where d > . Therefore,

IX∩∂Bρ ≥ (
ddλmaxλ

–
l+(T + )–

μ

) μ
–μ

[
λl+

λmax
ddλmaxλ

–
l+(T + )–

μ
 – d(T + )–

μ


]

=
(
d


– 
)
d
(
ddλmaxλ

–
l+(T + )–

μ

) μ
–μ (T + )–

μ
 .

Thus (i) of Lemma . holds true.
ChooseX := span{η, . . . ,ηm}, wherem > l, and dimX =m. From (H), we see that there

exist c, c >  such that

F(x)≥ c|x|α – c, ∀x ∈R.
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Therefore, from (.) and (.), we arrive at

–I(x) ≥ –
λm

λmin
‖x‖ + c

T∑
t=

∣∣x(t + ν – )
∣∣α – c(T + )

≥ –
λm

λmin
‖x‖ + ccαα‖x‖α – c(T + ).

Since α > , I(x)→ –∞ as ‖x‖ → ∞, x ∈ X. Thus (ii) of Lemma . holds true.
Finally, we prove that I satisfies the (C) condition. Let {xn} ⊂ X be such that for some

M > ,

∣∣I(xn)∣∣ ≤M,
(
 + ‖xn‖

)∥∥I ′(xn)∥∥ →  as n→ ∞.

We claim that ‖xn‖ is bounded. Otherwise, suppose that ‖xn‖ → ∞ as n → ∞. It is easy
to see that for any n ∈N, there existsM such that

I(xn) –
(
I ′(xn),xn

) ≤M.

On the other hand, from (H), there exist c, c >  such that

f (x)x – F(x)≥ c|x|γ – c, ∀x ∈R.

Consequently, from (.),

I(xn) –
(
I ′(xn),xn

)
=

T∑
t=

[
f
(
xn(t + ν – )

)
xn(t + ν – ) – F

(
xn(t + ν – )

)]

≥
T∑
t=

(
c

∣∣xn(t + ν – )
∣∣γ – c

) ≥ ccγγ ‖xn‖γ – c(T + ).

Let n→ ∞, and we get a contradiction.
It is easy to see that I is even and I(θ ) = . Thus all the conditions of Lemma . are

satisfied, and (.) has at leastm – l solutions. The proof is complete. �

Examples
. Let f (x) = ηx + η, where η ∈ (, λ

λmax
) and η �= . Clearly, (H) holds.

. Let f (x) = λl
λmin

(x + x)ex + x. Then F(x) = λl
λmin

xex + x. Thus, (H) and (H) hold
automatically. For R≥ , α = , we see

 <
λl

λmin
xex


+ x ≤ xf (x) =

λl

λmin

(
x + x

)
ex


+ x for all |x| > .

Therefore, (H) holds.
. Let f (x) = x + x. Then F(x) = x + x and (H), (H) hold. Choose α = , γ = ,

and we see

lim inf|x|→∞
x + x

|x| =  > , lim inf|x|→∞
f (x)x – F(x)

|x| = lim inf|x|→∞
x

|x| =  > .

Hence (H) and (H) hold.
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