1,464 research outputs found

    Excitation transport through Rydberg dressing

    Full text link
    We show how to create long range interactions between alkali-atoms in different hyper-fine ground states, allowing coherent electronic quantum state migration. The scheme uses off resonant dressing with atomic Rydberg states, exploiting the dipole-dipole excitation transfer that is possible between those. Actual population in the Rydberg state is kept small. Dressing offers large advantages over the direct use of Rydberg levels: It reduces ionisation probabilities and provides an additional tuning parameter for life-times and interaction-strengths. We present an effective Hamiltonian for the ground-state manifold and show that it correctly describes the full multi-state dynamics for up to 5 atoms.Comment: 22 pages + 6 pages appendices, 8 figures, replaced with revised version, added journal referenc

    Newton's cradle and entanglement transport in a flexible Rydberg chain

    Full text link
    In a regular, flexible chain of Rydberg atoms, a single electronic excitation localizes on two atoms that are in closer mutual proximity than all others. We show how the interplay between excitonic and atomic motion causes electronic excitation and diatomic proximity to propagate through the Rydberg chain as a combined pulse. In this manner entanglement is transferred adiabatically along the chain, reminiscent of momentum transfer in Newton's cradle.Comment: 4 pages, 3 figures. Revised versio

    Evolution of the Maximum Upper Level Divergence Field in Gulf-Atlantic Tropical Cyclogenesis

    Get PDF
    Upper-level (horizontal) divergence (ULD) is an important variable in tropical weather systems. As part of the circulation within a tropical cyclone (TC), it carries air in the upper troposphere away from the center of circulation (COC). To date, most research assumes the 200 hPa pressure level (approximately 12 km, varying with latitude and time of year) as the height for maximum ULD in a TC, possibly because weather observation at the 200 hPa level by radiosonde have remained mandatory for aviation purposes. The more recent availability of gridded, high-spatial-resolution, global “reanalysis” data at multiple levels, along with improvements in spatial interpolation techniques, has allowed for more precise and accurate determination of the heights at which peak ULD actually occurs, how that level varies temporally prior to and after tropical cyclogenesis (TCG), and how the spatial and temporal attributes of the three-dimensional zone of the maximum ULD field vary by storm. This research addresses these questions. Prediction of TCs is improving rapidly as scientific understanding of the atmospheric and oceanic conditions that characterize TCG, along with tools available for measuring the associated variables, are becoming more advanced and widespread. Results using the 2005 Atlantic tropical cyclone season suggest peak mean ULD during TCG occurs predominantly at 175 hPa and is typically located in the northeastern quadrant of the storm, hundreds of kilometers from the COC. The mean conditions showed a steady increase in magnitude of ULD from TCG ‒12 hours to TCG +6 hours and levels off or reduces at TCG +12 hours. Mean ULD is less organized on most levels before TCG and becomes more organized and concentrated between 200 hPa and 150 hPa from TCG to TCG +12 hours. Peak ULD during individual cyclogenesis occurrences varies widely in magnitude, temporally, and vertically. Therefore, each cyclone should be evaluated individually. In general, this research supports the notion that confinement of ULD analysis to a single pressure level could diminish research or model outcome as ULD location is variable in four-dimensional space. These results may be useful in weather and climate modeling as evolution of TC outflow can be better understood

    Adiabatic entanglement transport in Rydberg aggregates

    Full text link
    We consider the interplay between excitonic and atomic motion in a regular, flexible chain of Rydberg atoms, extending our recent results on entanglement transport in Rydberg chains [W\"uster et al., Phys.Rev.Lett 105 053004 (2010)]. In such a Rydberg chain, similar to molecular aggregates, an electronic excitation is delocalised due to long range dipole-dipole interactions among the atoms. The transport of an exciton that is initially trapped by a chain dislocation is strongly coupled to nuclear dynamics, forming a localised pulse of combined excitation and displacement. This pulse transfers entanglement between dislocated atoms adiabatically along the chain. Details about the interaction and the preparation of the initial state are discussed. We also present evidence that the quantum dynamics of this complex many-body problem can be accurately described by selected quantum-classical methods, which greatly simplify investigations of excitation transport in flexible chains

    Evaluation of on-board hydrogen storage methods for hypersonic vehicles

    Get PDF
    Hydrogen is the foremost candidate as a fuel for use in high speed transport. Since any aircraft moving at hypersonic speeds must have a very slender body, means of decreasing the storage volume requirements below that for liquid hydrogen are needed. The total performance of the hypersonic plane needs to be considered for the evaluation of candidate fuel and storage systems. To accomplish this, a simple model for the performance of a hypersonic plane is presented. To allow for the use of different engines and fuels during different phases of flight, the total trajectory is divided into three phases: subsonic-supersonic, hypersonic and rocket propulsion phase. The fuel fraction for the first phase is found be a simple energy balance using an average thrust to drag ratio for this phase. The hypersonic flight phase is investigated in more detail by taking small altitude increments. This approach allowed the use of flight profiles other than the constant dynamic pressure flight. The effect of fuel volume on drag, structural mass and tankage mass was introduced through simplified equations involving the characteristic dimension of the plane. The propellant requirement for the last phase is found by employing the basic rocket equations. The candidate fuel systems such as the cryogenic fuel combinations and solid and liquid endothermic hydrogen generators are first screened thermodynamically with respect to their energy densities and cooling capacities and then evaluated using the above model

    Dephasing of Mollow Triplet Sideband Emission of a Resonantly Driven Quantum Dot in a Microcavity

    Full text link
    Detailed properties of resonance fluorescence from a single quantum dot in a micropillar cavity are investigated, with particular focus on emission coherence in dependence on optical driving field power and detuning. Power-dependent series over a wide range could trace characteristic Mollow triplet spectra with large Rabi splittings of Ω15|\Omega| \leq 15 GHz. In particular, the effect of dephasing in terms of systematic spectral broadening Ω2\propto \Omega^2 of the Mollow sidebands is observed as a strong fingerprint of excitation-induced dephasing. Our results are in excellent agreement with predictions of a recently presented model on phonon-dressed QD Mollow triplet emission in the cavity-QED regime

    Indistinguishable photons from the resonance fluorescence of a single quantum dot in a microcavity

    Full text link
    We demonstrate purely resonant continuous-wave optical laser excitation to coherently prepare an excitonic state of a single semiconductor quantum dot (QDs) inside a high quality pillar microcavity. As a direct proof of QD resonance fluorescence, the evolution from a single emission line to the characteristic Mollow triplet10 is observed under increasing pump power. By controlled utilization of weak coupling between the emitter and the fundamental cavity mode through Purcell-enhancement of the radiative decay, a strong suppression of pure dephasing is achieved, which reflects in close to Fourier transform-limited and highly indistinguishable photons with a visibility contrast of 90%. Our experiments reveal the model-like character of the coupled QD-microcavity system as a promising source for the generation of ideal photons at the quantum limit. From a technological perspective, the vertical cavity symmetry -- with optional dynamic tunability -- provides strongly directed light emission which appears very desirable for future integrated emitter devices.Comment: 24 pages, 6 figure

    Pulp and paper production from Spruce wood with kraft and modified kraft methods

    Get PDF
    In this study, kraft and modified kraft pulping methods were applied for spruce (Picea orientalis) wood collected from the Black Sea Region of Turkey. Fiber properties, carbohydrate contents, strength and optical properties of resultant paper were included to determine the properties of these pulp samples. Optimum kraft, kraft-borohydride (NaBH4), kraft- anthraquinone (AQ) and kraft-ethanol pulping conditions were determined. After determining screened yield, kappa number, viscosity, fiber length, fiber coarseness, α-cellulose, holocellulose, lignin and ash content, breaking length, tear indexes and burst indexes of the obtained pulp samples, the differences of SEM image of each pulp sample were captured and evaluated. The results indicated that kraft-AQ pulps from spruce wood exhibited better characteristics than the other pulp samples with lower kappa number, higher paper strength properties and optical properties. However, kraft-NaBH4 method gave pulps with closer characteristics to kraft-AQ and also gave a higher screened yield and α-cellulose ratio than the others

    Near-field light localization using subwavelength apertures incorporated with metamaterials

    Get PDF
    Cataloged from PDF version of article.We report strong near-field electromagnetic localization by using subwavelength apertures and metamaterials that operate at microwave frequencies. We designed split ring resonators with distinct configurations in order to obtain extraordinary transmission results. Furthermore, we analyzed the field localization and focusing characteristics of the transmitted evanescent waves. The employed metamaterial configurations yielded an improvement on the transmission efficiency on the order of 27 dB and 50 dB for the deep subwavelength apertures. The metamaterial loaded apertures are considered as a total system that offered spot size conversion ratios as high as 7.12 and 9.11 for the corresponding metamaterial configurations. The proposed system is shown to intensify the electric fields of the source located in the near-field. It also narrows down the electromagnetic waves such that a full width at half maximum value of λ/29 is obtained. © 2012 Elsevier B.V. All rights reserved

    Efficient out-coupling of high-purity single photons from a coherent quantum dot in a photonic-crystal cavity

    Get PDF
    We demonstrate a single-photon collection efficiency of (44.3±2.1)%(44.3\pm2.1)\% from a quantum dot in a low-Q mode of a photonic-crystal cavity with a single-photon purity of g(2)(0)=(4±5)%g^{(2)}(0)=(4\pm5)\% recorded above the saturation power. The high efficiency is directly confirmed by detecting up to 962±46962\pm46 kilocounts per second on a single-photon detector on another quantum dot coupled to the cavity mode. The high collection efficiency is found to be broadband, as is explained by detailed numerical simulations. Cavity-enhanced efficient excitation of quantum dots is obtained through phonon-mediated excitation and under these conditions, single-photon indistinguishability measurements reveal long coherence times reaching 0.77±0.190.77\pm0.19 ns in a weak-excitation regime. Our work demonstrates that photonic crystals provide a very promising platform for highly integrated generation of coherent single photons including the efficient out-coupling of the photons from the photonic chip.Comment: 13 pages, 8 figures, submitte
    corecore