2,458 research outputs found
A Study of the LXeGRIT Detection Efficiency for MeV Gamma-Rays during the 2000 Balloon Flight Campaign
LXeGRIT - Liquid Xenon Gamma-Ray Imaging Telescope - is the first prototype
of a Compton telescope for \MeV \g-ray astrophysics based on a LXe time
projection chamber. One of the most relevant figures of merit for a Compton
telescope is the detection efficiency for \g-rays, which depends on diverse
contributions such as detector geometry and passive materials, trigger
efficiency, dead time, etc. A detailed study of the efficiency of the LXeGRIT
instrument, based both on laboratory measurements and Monte Carlo simulations,
is presented in this paper.Comment: 20 pages, 15 figures; submitted to NIM
Compton Imaging of MeV Gamma-Rays with the Liquid Xenon Gamma-Ray Imaging Telescope (LXeGRIT)
The Liquid Xenon Gamma-Ray Imaging Telescope (LXeGRIT) is the first
realization of a liquid xenon time projection chamber for Compton imaging of
MeV gamma-ray sources in astrophysics. By measuring the energy deposit and the
three spatial coordinates of individual gamma-ray scattering points, the
location of the source in the sky is inferred with Compton kinematics
reconstruction. The angular resolution is determined by the detector's energy
and spatial resolutions, as well as by the separation in space between the
first and second scattering. The imaging response of LXeGRIT was established
with gamma-rays from radioactive sources, during calibration and integration at
the Columbia Astrophysics Laboratory, prior to the 2000 balloon flight mission.
In this paper we describe in detail the various steps involved in imaging
sources with LXeGRIT and present experimental results on angular resolution and
other parameters which characterize its performance as a Compton telescope.Comment: 22 pages, 20 figures, submitted to NIM
A Monte Carlo analysis of the liquid xenon TPC as gamma ray telescope
Extensive Monte Carlo modeling of a coded aperture x ray telescope based on a high resolution liquid xenon TPC has been performed. Results on efficiency, background reduction capability and source flux sensitivity are presented. We discuss in particular the development of a reconstruction algorithm for events with multiple interaction points. From the energy and spatial information, the kinematics of Compton scattering is used to identify and reduce background events, as well as to improve the detector response in the few MeV region. Assuming a spatial resolution of 1 mm RMS and an energy resolution of 4.5 percent FWHM at 1 MeV, the algorithm is capable of reducing by an order of magnitude the background rate expected at balloon altitude, thus significantly improving the telescope sensitivity
Design and Performance of the XENON10 Dark Matter Experiment
XENON10 is the first two-phase xenon time projection chamber (TPC) developed
within the XENON dark matter search program. The TPC, with an active liquid
xenon (LXe) mass of about 14 kg, was installed at the Gran Sasso underground
laboratory (LNGS) in Italy, and operated for more than one year, with excellent
stability and performance. Results from a dark matter search with XENON10 have
been published elsewhere. In this paper, we summarize the design and
performance of the detector and its subsystems, based on calibration data using
sources of gamma-rays and neutrons as well as background and Monte Carlo
simulations data. The results on the detector's energy threshold, energy and
position resolution, and overall efficiency show a performance that exceeds
design specifications, in view of the very low energy threshold achieved (<10
keVr) and the excellent energy resolution achieved by combining the ionization
and scintillation signals, detected simultaneously
Liquid xenon time projection chamber for gamma rays in the MeV region: Development status
The feasibility of a large volume Liquid Xenon Time Projection Chamber (LXe-TPC) for three dimensional imaging and spectroscopy of cosmic gamma ray sources, was tested with a 3.5 liter prototype. The observation of induction signals produced by MeV gamma rays in liquid xenon is reported, with a good signal-to-noise ratio. The results represent the first experimental demonstration with a liquid xenon ionization chamber of a nondestructive readout of the electron image produced by point-like charges, using a sense wire configuration of the type originally proposed in 1970 by Gatti et al. An energy resolution as good as that previously measured by the millimeter size chambers, was achieved with the large prototype of 4.4 cm drift gap
Compton scattering sequence reconstruction algorithm for the liquid xenon gamma-ray imaging telescope (LXeGRIT)
The Liquid Xenon Gamma-Ray Imaging Telescope (LXeGRIT) is a balloon born
experiment sensitive to \g -rays in the energy band of 0.2-20 MeV. The main
detector is a time projection chamber filled with high purity liquid xenon
(LXeTPC), in which the three-dimensional location and energy deposit of
individual \g -ray interactions are accurately measured in one homogeneous
volume. To determine the \g -ray initial direction (Compton imaging), as well
as to reject background, the correct sequence of interactions has to be
determined. Here we report the development and optimization of an algorithm to
reconstruct the Compton scattering sequence and show its performance on Monte
Carlo events and LXeGRIT data.Comment: To appear in: Hard X-Ray, Gamma-Ray, and Neutron Detector Physics II,
2000; Proc. SPIE, vol. 4141; R.B. James & R.C. Schirato, ed
Gator: a low-background counting facility at the Gran Sasso Underground Laboratory
A low-background germanium spectrometer has been installed and is being
operated in an ultra-low background shield (the Gator facility) at the Gran
Sasso underground laboratory in Italy (LNGS). With an integrated rate of ~0.16
events/min in the energy range between 100-2700 keV, the background is
comparable to those of the world's most sensitive germanium detectors. After a
detailed description of the facility, its background sources as well as the
calibration and efficiency measurements are introduced. Two independent
analysis methods are described and compared using examples from selected sample
measurements. The Gator facility is used to screen materials for XENON, GERDA,
and in the context of next-generation astroparticle physics facilities such as
DARWIN.Comment: 14 pages, 6 figures, published versio
Two energy gaps in cuprates: pairing and coherence gaps: The interpretation of tunneling and inelastic neutron scattering measurements
Tunneling and inelastic neutron scattering (INS) measurements in cuprates are
discussed. There is a clear discrepancy among energy-gap values for different
90 K cuprates, inferred from tunneling measurements. By using the phase diagram
of hole-doped cuprates we interpret tunneling measurements in 90 K cuprates and
INS data in YBCO.Comment: 2 pages (including 3 figures) Physica C (in press). Proceedings of
M2S-HTSC-VI Conference. Houston, February 20-25, 200
- …