18 research outputs found

    Recent Upgrades of the Gas Handling System for the Cryogenic Stopping Cell of the FRS Ion Catcher

    Full text link
    In this paper, the major upgrades and technical improvements of the buffer gas handling system for the cryogenic stopping cell of the FRS Ion Catcher at GSI/FAIR (in Darmstadt, Germany) are described. The upgrades include implementation of new gas lines and gas purifiers to achieve a higher buffer gas cleanliness for a more efficient extraction of reactive ions as well as suppression of the molecular background ionized in the stopping cell. Furthermore, additional techniques have been implemented for improved monitoring and quantification of the purity of the helium buffer gas

    Investigating nuclear structure near N=32 and N=34: Precision mass measurements of neutron-rich Ca, Ti, and V isotopes

    Get PDF
    Nuclear mass measurements of isotopes are key to improving our understanding of nuclear structure across the chart of nuclides, in particular, for the determination of the appearance or disappearance of nuclear shell closures. We present high-precision mass measurements of neutron-rich Ca, Ti, and V isotopes performed at TRIUMF's Ion Trap for Atomic and Nuclear science (TITAN) and the Low Energy Beam and Ion Trap (LEBIT) facilities. These measurements were made using the TITAN multiple-reflection time-of-flight mass spectrometer (MR-ToF-MS) and the LEBIT 9.4T Penning trap mass spectrometer. In total, 13 masses were measured, 8 of which represent increases in precision over previous measurements. These measurements refine trends in the mass surface around N=32 and N=34, and support the disappearance of the N=32 shell closure with increasing proton number. Additionally, our data do not support the presence of a shell closure at N=34.Nuclear mass measurements of isotopes are key to improving our understanding of nuclear structure across the chart of nuclides, in particular for the determination of the appearance or disappearance of nuclear shell closures. We present high-precision mass measurements of neutron-rich Ca, Ti and V isotopes performed at the TITAN and LEBIT facilities. These measurements were made using the TITAN multiple-reflection time-of-flight mass spectrometer (MR-ToF-MS) and the LEBIT 9.4T Penning trap mass spectrometer. In total, 13 masses were measured, eight of which represent increases in precision over previous measurements. These measurements refine trends in the mass surface around N=32N = 32 and N=34N = 34, and support the disappearance of the N=32N = 32 shell closure with increasing proton number. Additionally, our data does not support the presence of a shell closure at N=34N = 34

    Mass measurements of As, Se and Br nuclei and their implication on the proton-neutron interaction strength towards the N=Z line

    Get PDF
    Mass measurements of the nuclides 69As, 70,71Se, and 71Br, produced via fragmentation of a 124Xe primary beam at the Fragment Separator (FRS) at GSI, have been performed with the multiple-reflection time-of-flight mass spectrometer (MR-TOF-MS) of the FRS Ion Catcher with an unprecedented mass resolving power of almost 1000000. Such high resolving power is the only way to achieve accurate results and resolve overlapping peaks of short-lived exotic nuclei, whose total number of accumulated events is always limited. For the nuclide 69As, this is the first direct mass measurement. A mass uncertainty of 22 keV was achieved with only ten events. For the nuclide 70Se, a mass uncertainty of 2.6 keV was obtained, corresponding to a relative accuracy of δm/m=4.0×10−8, with less than 500 events. The masses of the nuclides 71Se and 71Br have been measured with an uncertainty of 23 and 16 keV, respectively. Our results for the nuclides 70,71Se and 71Br are in good agreement with the 2016 Atomic Mass Evaluation, and our result for the nuclide 69As resolves the discrepancy between the previous indirect measurements. We measured also the mass of the molecule 14N15N40Ar (A=69) with a relative accuracy of δm/m=1.7×10−8, the highest yet achieved with an MR-TOF-MS. Our results show that the measured restrengthening of the proton-neutron interaction (δVpn) for odd-odd nuclei along the N=Z line above Z=29 (recently extended to Z=37) is hardly evident at the N−Z=2 line, and not evident at the N−Z=4 line. Nevertheless, detailed structure of δVpn along the N−Z=2 and N−Z=4 lines, confirmed by our mass measurements, may provide a hint regarding the ongoing ≈500 keV discrepancy in the mass value of the nuclide 70Br, which prevents including it in the world average of Ft value for superallowed 0+→0+β decays. The reported work sets the stage for mass measurements with the FRS Ion Catcher of nuclei at and beyond the N=Z line in the same region of the nuclear chart, including the nuclide 70Br.peerReviewe

    Mass and half-life measurements of neutron-deficient iodine isotopes

    Get PDF
    Neutron-deficient iodine isotopes, 116I and 114I, were produced at relativistic energies by in-flight fragmentation at the Fragment Separator (FRS) at GSI. The FRS Ion Catcher was used to thermalize the ions and to perform highly accurate mass measurements with a Multiple-Reflection Time-of-Flight Mass-Spectrometer (MR-TOF-MS). The masses of both isotopes were measured directly for the first time. The half-life of the 114I was measured by storing the ions in an RF quadrupole for different storage times and counting the remaining nuclei with the MR-TOF-MS. The measured half-life was used to assign the ground state to the measured 114I ions. Predictions on the possible α-decay branch for 114I are presented based on the reduced uncertainties obtained for the Qα-value. Systematic studies of the mass surface were performed with the newly obtained masses, showing better agreement with the expected trend in this mass region.peerReviewe

    First coupling of the FRS particle identification and the FRS-Ion Catcher data acquisition systems: The case of 109In

    Get PDF
    6 pags. 5 figs.For the first time, the FRagment Separator (FRS) and the Multiple-Reflection Time-Of-Flight Mass-Spectrometer (MR-TOF-MS) particle identification (PID) systems at GSI have been coupled. This new approach adds to the standard FRS PID an additional unambiguous identification of the fragments and the possibility to identify and count long-lived isomeric states (>ms). For this purpose, single-event timestamp information given by a common clock was used to correlate both systems. Two methods were implemented to improve the signal-to-background ratio by more than a factor 2 in the high resolution mass spectrum obtained with the MR-TOF-MS for the 109In isotope. Moreover, the coupling of the systems allows an improvement in the on-line monitoring of the FRS-Ion Catcher (IC) efficiency and extraction time. In addition, range calculations were implemented in the on-line monitoring; a powerful tool for real-time optimization of stopped beam experiments.The ELI-NP group was supported by Extreme Light Infrastructure Nuclear Physics (ELI-NP), Germany Phase II, a project co-financed by the Romanian Government and the European Union through the European Regional Development Fund the Competitiveness Operational Programme (1/07.07.2016, COP,ID 1334) and by the Romanian Ministry of Research and Innovation under contract PN 19 06 01 05. This work was supported by the German Federal Ministry for Education and Research (BMBF) under contracts No. 05P19RGFN1, 05P12RGFN8 and 05P15RGFN1, by Justus Liebig University Gießen, Germany and GSI, Germany under the JLU-GSI strategic Helmholtz partnership agreement, by HGS-HIRe, and by theHessian Ministry for Science and Art (HMWK), Germany. O. Hall was supported by UKRI STFC, United Kingdom grant ST/P004008/1.Peer reviewe

    First spatial separation of a heavy ion isomeric beam with a multiple-reflection time-of-flight mass spectrometer

    Get PDF
    211 Po ions in the ground and isomeric states were produced via 238 U projectile fragmentation at 1000 MeV/u. The 211 Po ions were spatially separated in flight from the primary beam and other reaction products by the fragment separator FRS. The ions were energy-bunched, slowed-down and thermalized in a gas-filled cryogenic stopping cell (CSC). They were then extracted from the CSC and injected into a high-resolution multiple-reflection time-of-flight mass spectrometer (MR-TOF-MS). The excitation energy of the isomer and, for the first time, the isomeric-to-ground state ratio were determined from the measured mass spectrum. In the subsequent experimental step, the isomers were spatially separated from the ions in the ground state by an ion deflector and finally collected with a silicon detector for decay spectroscopy. This pioneering experimental result opens up unique perspectives for isomer-resolved studies. With this versatile experimental method new isomers with half-lives longer than a few milliseconds can be discovered and their decay properties can be measured with highest sensitivity and selectivity. These experiments can be extended to studies with isomeric beams in nuclear reactions
    corecore