21 research outputs found

    A gravitational-wave standard siren measurement of the Hubble constant

    Get PDF
    The detection of GW170817 (ref. 1) heralds the age of gravitational-wave multi-messenger astronomy, with the observations of gravitational-wave and electromagnetic emission from the same transient source. On 17 August 2017 the network of Advanced Laser Interferometer Gravitational-wave Observatory (LIGO)2 and Virgo3 detectors observed GW170817, a strong signal from the merger of a binary neutron-star system. Less than two seconds after the merger, a γ-ray burst event, GRB 170817A, was detected consistent with the LIGO–Virgo sky localization region4–6). The sky region was subsequently observed by optical astronomy facilities7, resulting in the identification of an optical transient signal within about 10 arcseconds of the galaxy NGC 4993 (refs 8–13). GW170817 can be used as a standard siren14–18, combining the distance inferred purely from the gravitational-wave signal with the recession velocity arising from the electromagnetic data to determine the Hubble constant. This quantity, representing the local expansion rate of the Universe, sets the overall scale of the Universe and is of fundamental importance to cosmology. Our measurements do not require any form of cosmic ‘distance ladder’19; the gravitational-wave analysis directly estimates the luminosity distance out to cosmological scales. Here we report H0 = kilometres per second per megaparsec, which is consistent with existing measurements20,21, while being completely independent of them

    Constraints on cosmic strings using data from the first Advanced LIGO observing run

    Get PDF
    Cosmic strings are topological defects which can be formed in grand unified theory scale phase transitions in the early universe. They are also predicted to form in the context of string theory. The main mechanism for a network of Nambu-Goto cosmic strings to lose energy is through the production of loops and the subsequent emission of gravitational waves, thus offering an experimental signature for the existence of cosmic strings. Here we report on the analysis conducted to specifically search for gravitational-wave bursts from cosmic string loops in the data of Advanced LIGO 2015-2016 observing run (O1). No evidence of such signals was found in the data, and as a result we set upper limits on the cosmic string parameters for three recent loop distribution models. In this paper, we initially derive constraints on the string tension Gμ and the intercommutation probability, using not only the burst analysis performed on the O1 data set but also results from the previously published LIGO stochastic O1 analysis, pulsar timing arrays, cosmic microwave background and big-bang nucleosynthesis experiments. We show that these data sets are complementary in that they probe gravitational waves produced by cosmic string loops during very different epochs. Finally, we show that the data sets exclude large parts of the parameter space of the three loop distribution models we consider

    All-sky search for short gravitational-wave bursts in the third Advanced LIGO and Advanced Virgo run

    No full text
    This paper presents the results of a search for generic short-duration gravitational-wave transients in data from the third observing run of Advanced LIGO and Advanced Virgo. Transients with durations of milliseconds to a few seconds in the 24–4096 Hz frequency band are targeted by the search, with no assumptions made regarding the incoming signal direction, polarization, or morphology. Gravitational waves from compact binary coalescences that have been identified by other targeted analyses are detected, but no statistically significant evidence for other gravitational wave bursts is found. Sensitivities to a variety of signals are presented. These include updated upper limits on the source rate density as a function of the characteristic frequency of the signal, which are roughly an order of magnitude better than previous upper limits. This search is sensitive to sources radiating as little as ∼10^−10 M⊙ c^2 in gravitational waves at ∼70 Hz from a distance of 10 kpc, with 50% detection efficiency at a false alarm rate of one per century. The sensitivity of this search to two plausible astrophysical sources is estimated: neutron star f modes, which may be excited by pulsar glitches, as well as selected core-collapse supernova models

    Search for continuous gravitational waves from 20 accreting millisecond x-ray pulsars in O3 LIGO data

    Get PDF
    Results are presented of searches for continuous gravitational waves from 20 accreting millisecond x-ray pulsars with accurately measured spin frequencies and orbital parameters, using data from the third observing run of the Advanced LIGO and Advanced Virgo detectors. The search algorithm uses a hidden Markov model, where the transition probabilities allow the frequency to wander according to an unbiased random walk, while the J-statistic maximum-likelihood matched filter tracks the binary orbital phase. Three narrow subbands are searched for each target, centered on harmonics of the measured spin frequency. The search yields 16 candidates, consistent with a false alarm probability of 30% per subband and target searched. These candidates, along with one candidate from an additional target-of-opportunity search done for SAX J1808.4−3658, which was in outburst during one month of the observing run, cannot be confidently associated with a known noise source. Additional follow-up does not provide convincing evidence that any are a true astrophysical signal. When all candidates are assumed nonastrophysical, upper limits are set on the maximum wave strain detectable at 95% confidence, h_0^95%. The strictest constraint is h_0^95% = 4.7×10^−26 from IGR J17062−6143. Constraints on the detectable wave strain from each target lead to constraints on neutron star ellipticity and r-mode amplitude, the strictest of which are ε^95% = 3.1 × 10^−7 and α^95% = 1.8 × 10^−5 respectively. This analysis is the most comprehensive and sensitive search of continuous gravitational waves from accreting millisecond x-ray pulsars to date

    Search for gravitational waves from Scorpius X-1 in the second Advanced LIGO observing run with an improved hidden Markov model

    No full text
    We present results from a semicoherent search for continuous gravitational waves from the low-mass x-ray binary Scorpius X-1, using a hidden Markov model (HMM) to track spin wandering. This search improves on previous HMM-based searches of LIGO data by using an improved frequency domain matched filter, the J-statistic, and by analyzing data from Advanced LIGO’s second observing run. In the frequency range searched, from 60 to 650 Hz, we find no evidence of gravitational radiation. At 194.6 Hz, the most sensitive search frequency, we report an upper limit on gravitational wave strain (at 95% confidence) of h^95%_0 = 3.47×10−25 when marginalizing over source inclination angle. This is the most sensitive search for Scorpius X-1, to date, that is specifically designed to be robust in the presence of spin wandering

    All-sky search for continuous gravitational waves from isolated neutron stars using Advanced LIGO and Advanced Virgo O3 data

    No full text
    We present results of an all-sky search for continuous gravitational waves which can be produced by spinning neutron stars with an asymmetry around their rotation axis, using data from the third observing run of the Advanced LIGO and Advanced Virgo detectors. Four different analysis methods are used to search in a gravitational-wave frequency band from 10 to 2048 Hz and a first frequency derivative from −10^−8 to 10^−9 Hz/s. No statistically significant periodic gravitational-wave signal is observed by any of the four searches. As a result, upper limits on the gravitational-wave strain amplitude h0 are calculated. The best upper limits are obtained in the frequency range of 100 to 200 Hz and they are ∼1.1×10^−25 at 95% confidence level. The minimum upper limit of 1.10×10^−25 is achieved at a frequency 111.5 Hz. We also place constraints on the rates and abundances of nearby planetary- and asteroid-mass primordial black holes that could give rise to continuous gravitational-wave signals

    All-sky search for gravitational wave emission from scalar boson clouds around spinning black holes in LIGO O3 data

    No full text
    This paper describes the first all-sky search for long-duration, quasimonochromatic gravitational-wave signals emitted by ultralight scalar boson clouds around spinning black holes using data from the third observing run of Advanced LIGO. We analyze the frequency range from 20 to 610 Hz, over a small frequency derivative range around zero, and use multiple frequency resolutions to be robust towards possible signal frequency wanderings. Outliers from this search are followed up using two different methods, one more suitable for nearly monochromatic signals, and the other more robust towards frequency fluctuations. We do not find any evidence for such signals and set upper limits on the signal strain amplitude, the most stringent being ???10???25 at around 130 Hz. We interpret these upper limits as both an ???exclusion region??? in the boson mass/black hole mass plane and the maximum detectable distance for a given boson mass, based on an assumption of the age of the black hole/boson cloud system

    Search for continuous gravitational wave emission from the Milky??Way center in O3 LIGO-Virgo data

    No full text
    We present a directed search for continuous gravitational wave (CW) signals emitted by spinning neutron stars located in the inner parsecs of the Galactic Center (GC). Compelling evidence for the presence of a numerous population of neutron stars has been reported in the literature, turning this region into a very interesting place to look for CWs. In this search, data from the full O3 LIGO-Virgo run in the detector frequency band [10, 2000] Hz have been used. No significant detection was found and 95% confidence level upper limits on the signal strain amplitude were computed, over the full search band, with the deepest limit of about 7.6 x 10(-26) at similar or equal to 142 Hz. These results are significantly more constraining than those reported in previous searches. We use these limits to put constraints on the fiducial neutron star ellipticity and r-mode amplitude. These limits can be also translated into constraints in the black hole mass-boson mass plane for a hypothetical population of boson clouds around spinning black holes located in the GC

    Search for Subsolar-Mass Binaries in the First Half of Advanced LIGO???s and Advanced Virgo???s Third Observing Run

    No full text
    We report on a search for compact binary coalescences where at least one binary component has a mass between 0.2 M⊙ and 1.0 M⊙ in Advanced LIGO and Advanced Virgo data collected between 1 April 2019 1500 UTC and 1 October 2019 1500 UTC. We extend our previous analyses in two main ways: we include data from the Virgo detector and we allow for more unequal mass systems, with mass ratio q ≥ 0.1. We do not report any gravitational-wave candidates. The most significant trigger has a false alarm rate of 0.14 yr^−1. This implies an upper limit on the merger rate of subsolar binaries in the range [220−24200] Gpc^−3 yr^−1,depending on the chirp mass of the binary. We use this upper limit to derive astrophysical constraints on two phenomenological models that could produce subsolar-mass compact objects. One is an isotropic distribution of equal-mass primordial black holes. Using this model, we find that the fraction of dark matter in primordial black holes in the mass range 0.2 M⊙ < m PBH < 1.0 M⊙ is f PBH ≡ Ω PBH/Ω DM ≲ 6%. This improves existing constraints on primordial black hole abundance by a factor of ∼3. The other is a dissipative dark matter model, in which fermionic dark matter can collapse and form black holes. The upper limit on the fraction of dark matter black holes depends on the minimum mass of the black holes that can be formed: the most constraining result is obtained at M min = 1 M⊙, where f DBH ≡ Ω DBH/Ω DM ≲ 0.003%. These are the first constraints placed on dissipative dark models by subsolar-mass analyses

    Observing gravitational-wave transient GW150914 with minimal assumptions

    Get PDF
    The gravitational-wave signal GW150914 was first identified on September 14, 2015, by searches for short-duration gravitational-wave transients. These searches identify time-correlated transients in multiple detectors with minimal assumptions about the signal morphology, allowing them to be sensitive to gravitational waves emitted by a wide range of sources including binary black hole mergers. Over the observational period from September 12 to October 20, 2015, these transient searches were sensitive to binary black hole mergers similar to GW150914 to an average distance of similar to 600 Mpc. In this paper, we describe the analyses that first detected GW150914 as well as the parameter estimation and waveform reconstruction techniques that initially identified GW150914 as the merger of two black holes. We find that the reconstructed waveform is consistent with the signal from a binary black hole merger with a chirp mass of similar to 30 M-circle dot and a total mass before merger of similar to 70 M-circle dot in the detector frame
    corecore