197 research outputs found

    PocketWATCH: Design and operation of a multi-use test bed for water Cherenkov detector components in pure and gadolinium loaded water

    Get PDF
    The PocketWATCH facility is a unique multi-purpose test bed designed to replicate the conditions of large water Cherenkov detectors. Housed at the University of Sheffield, the facility consists of a light-tight 2000L ultrapure water tank with purification and temperature control systems. Water temperature, resistivity, and UV attenuation in the tank are monitored and shown to be stable over time. The system is also shown to be compatible with a solution of 0.2% gadolinium sulfate, allowing further utility in testing equipment bound for the next generation neutrino and nucleon decay water Cherenkov particle detectors. The relevant water quality parameters are shown to be stable whilst running in Gd-mode, thereby providing a suitable test bed for hardware development in a realistic, ex situ environment

    A Proposal for a Three Detector Short-Baseline Neutrino Oscillation Program in the Fermilab Booster Neutrino Beam

    Get PDF
    A Short-Baseline Neutrino (SBN) physics program of three LAr-TPC detectors located along the Booster Neutrino Beam (BNB) at Fermilab is presented. This new SBN Program will deliver a rich and compelling physics opportunity, including the ability to resolve a class of experimental anomalies in neutrino physics and to perform the most sensitive search to date for sterile neutrinos at the eV mass-scale through both appearance and disappearance oscillation channels. Using data sets of 6.6e20 protons on target (P.O.T.) in the LAr1-ND and ICARUS T600 detectors plus 13.2e20 P.O.T. in the MicroBooNE detector, we estimate that a search for muon neutrino to electron neutrino appearance can be performed with ~5 sigma sensitivity for the LSND allowed (99% C.L.) parameter region. In this proposal for the SBN Program, we describe the physics analysis, the conceptual design of the LAr1-ND detector, the design and refurbishment of the T600 detector, the necessary infrastructure required to execute the program, and a possible reconfiguration of the BNB target and horn system to improve its performance for oscillation searches.Comment: 209 pages, 129 figure

    Search for astronomical neutrinos from blazar TXS 0506+056 in super-kamiokande

    Get PDF
    We report a search for astronomical neutrinos in the energy region from several GeV to TeV in the direction of the blazar TXS 0506+056 using the Super-Kamiokande detector following the detection of a 100 TeV neutrinos from the same location by the IceCube collaboration. Using Super-Kamiokande neutrino data across several data samples observed from 1996 April to 2018 February we have searched for both a total excess above known backgrounds across the entire period as well as localized excesses on smaller timescales in that interval. No significant excess nor significant variation in the observed event rate are found in the blazar direction. Upper limits are placed on the electron- and muon-neutrino fluxes at the 90% confidence level as 6.0 × 10−7 and 4.5 × 10−7–9.3 × 10−10 [erg cm−2 s−1], respectively

    'The Germans are Hydrophobes': Germany and the Germans in the Shaping of French Identity

    Get PDF
    This article addresses issues of national identity and nationalism in the age of the French Revolution by looking at French attitudes towards the Germans. It engages with theories of nationalism while presenting empirical evidence gleaned from archival research. This material, sometimes grimly, sometimes rather amusingly, reveals much about French ideas and prejudices about the Germans and how it reflected back on the revolutionary and Napoleonic sense of what it meant to be French

    Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE) Conceptual Design Report Volume 2: The Physics Program for DUNE at LBNF

    Full text link
    The Physics Program for the Deep Underground Neutrino Experiment (DUNE) at the Fermilab Long-Baseline Neutrino Facility (LBNF) is described

    Evaluation of gadolinium's action on water Cherenkov detector systems with EGADS

    Get PDF
    Used for both proton decay searches and neutrino physics, large water Cherenkov (WC) detectors have been very successful tools in particle physics. They are notable for their large masses and charged particle detection capabilities. While current WC detectors reconstruct charged particle tracks over a wide energy range, they cannot efficiently detect neutrons. Gadolinium (Gd) has the largest thermal neutron capture cross section of all stable nuclei and produces an 8 MeV gamma cascade that can be detected with high efficiency. Because of the many new physics opportunities that neutron tagging with a Gd salt dissolved in water would open up, a large-scale R&D program called EGADS was established to demonstrate this technique's feasibility. EGADS features all the components of a WC detector, chiefly a 200-ton stainless steel water tank furnished with 240 photo-detectors, DAQ, and a water system that removes all impurities in water while keeping Gd in solution. In this paper we discuss the milestones towards demonstrating the feasibility of this novel technique, and the features of EGADS in detail

    Cryogenic CMOS Cameras for High Voltage Monitoring in Liquid Argon

    Get PDF
    The prevalent use of large volume liquid argon detectors strongly motivates the development of novel readout and monitoring technology which functions at cryogenic temperatures. This paper presents the development of a cryogenic CMOS camera system suitable for use inside a large volume liquid argon detector for online monitoring purposes. The characterisation of the system is described in detail. The reliability of such a camera system has been demonstrated over several months, and recent data from operation within the liquid argon region of the DUNE 35tcryostat is presented. The cameras were used to monitor for high voltage breakdown inside the cryostat, with capability to observe breakdown of a liquid argon time projection chamber in situ. They were also used for detector monitoring, especially of components during cooldown

    The Long-Baseline Neutrino Experiment: Exploring Fundamental Symmetries of the Universe

    Get PDF
    The preponderance of matter over antimatter in the early Universe, the dynamics of the supernova bursts that produced the heavy elements necessary for life and whether protons eventually decay --- these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our Universe, its current state and its eventual fate. The Long-Baseline Neutrino Experiment (LBNE) represents an extensively developed plan for a world-class experiment dedicated to addressing these questions. LBNE is conceived around three central components: (1) a new, high-intensity neutrino source generated from a megawatt-class proton accelerator at Fermi National Accelerator Laboratory, (2) a near neutrino detector just downstream of the source, and (3) a massive liquid argon time-projection chamber deployed as a far detector deep underground at the Sanford Underground Research Facility. This facility, located at the site of the former Homestake Mine in Lead, South Dakota, is approximately 1,300 km from the neutrino source at Fermilab -- a distance (baseline) that delivers optimal sensitivity to neutrino charge-parity symmetry violation and mass ordering effects. This ambitious yet cost-effective design incorporates scalability and flexibility and can accommodate a variety of upgrades and contributions. With its exceptional combination of experimental configuration, technical capabilities, and potential for transformative discoveries, LBNE promises to be a vital facility for the field of particle physics worldwide, providing physicists from around the globe with opportunities to collaborate in a twenty to thirty year program of exciting science. In this document we provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess.Comment: Major update of previous version. This is the reference document for LBNE science program and current status. Chapters 1, 3, and 9 provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess. 288 pages, 116 figure

    An examination of the long-term business value of investments in information technology

    Get PDF
    In this paper, we examine the effects of investments in Information Technology (IT) on the long term business values of organizations. The regression discontinuity design is used in this research to examine eight hundred and ten IT investment announcements collected from the period 1982–2007. Our results found that press releases can affect the market value of a firm by possibly providing investors with a better idea of a firm’s current and future operations and strategy. On the other hand, these press releases also appear to attract more transient investors. The attraction of transient investors likely suggests the market believes the IT investing firm is serious about its potential for growth and expansion
    corecore