13,768 research outputs found

    Rubber friction on (apparently) smooth lubricated surfaces

    Full text link
    We study rubber sliding friction on hard lubricated surfaces. We show that even if the hard surface appears smooth to the naked eye, it may exhibit short wavelength roughness, which may give the dominant contribution to rubber friction. That is, the observed sliding friction is mainly due to the viscoelastic deformations of the rubber by the substrate surface asperities. The presented results are of great importance for rubber sealing and other rubber applications involving (apparently) smooth surfaces.Comment: 7 pages, 15 figure

    Fluid flow at the interface between elastic solids with randomly rough surfaces

    Full text link
    I study fluid flow at the interface between elastic solids with randomly rough surfaces. I use the contact mechanics model of Persson to take into account the elastic interaction between the solid walls and the Bruggeman effective medium theory to account for the influence of the disorder on the fluid flow. I calculate the flow tensor which determines the pressure flow factor and, e.g., the leak-rate of static seals. I show how the perturbation treatment of Tripp can be extended to arbitrary order in the ratio between the root-mean-square roughness amplitude and the average interfacial surface separation. I introduce a matrix D(Zeta), determined by the surface roughness power spectrum, which can be used to describe the anisotropy of the surface at any magnification Zeta. I present results for the asymmetry factor Gamma(Zeta) (generalized Peklenik number) for grinded steel and sandblasted PMMA surfaces.Comment: 16 pages, 14 figure

    Time Double-Slit Interference in Tunneling Ionization

    Get PDF
    We show that interference phenomena plays a big role for the electron yield in ionization of atoms by an ultra-short laser pulse. Our theoretical study of single ionization of atoms driven by few-cycles pulses extends the photoelectron spectrum observed in the double-slit experiment by Lindner et al, Phys. Rev. Lett. \textbf{95}, 040401 (2005) to a complete three-dimensional momentum picture. We show that different wave packets corresponding to the same single electron released at different times interfere, forming interference fringes in the two-dimensional momentum distributions. These structures reproduced by means of \textit{ab initio} calculations are understood within a semiclassical model.Comment: 7 pages, 5 figure

    Evidence for the absence of regularization corrections to the partial-wave renormalization procedure in one-loop self energy calculations in external fields

    Full text link
    The equivalence of the covariant renormalization and the partial-wave renormaliz ation (PWR) approach is proven explicitly for the one-loop self-energy correction (SE) of a bound electron state in the presence of external perturbation potentials. No spurious correctio n terms to the noncovariant PWR scheme are generated for Coulomb-type screening potentia ls and for external magnetic fields. It is shown that in numerical calculations of the SE with Coulombic perturbation potential spurious terms result from an improper treatment of the unphysical high-energy contribution. A method for performing the PWR utilizing the relativistic B-spline approach for the construction of the Dirac spectrum in external magnetic fields is proposed. This method is applied for calculating QED corrections to the bound-electron gg-factor in H-like ions. Within the level of accuracy of about 0.1% no spurious terms are generated in numerical calculations of the SE in magnetic fields.Comment: 22 pages, LaTeX, 1 figur

    Self-Policing: Dissemination and Adoption of Police Eyewitness Policies in Virginia

    Get PDF
    Professional policing organizations emphasize the importance of the adoption of sound police policies and procedures, but traditionally doing so has been left to individual agencies. State and local government typically does not closely regulate police, and neither federal constitutional rulings nor state law typically sets out in any detail the practices that police should follow. Thus, law enforcement agencies must themselves draft and disseminate policy. This paper presents the results of studies used to assess the adoption of eyewitness identification policies by law enforcement agencies in Virginia. Policymakers were focused on this problem because Virginia experienced a series of DNA exonerations in cases involving eyewitness misidentifications. In 2005, lawmakers enacted a law that required agencies to have some written policy in place. However, there was little guidance on what that policy should be. To remedy this problem, the state law enforcement policy agency, the Virginia Department of Criminal Justice Services (DCJS) promulgated, in 2011, a detailed model policy on eyewitness procedure. Nevertheless, as reported in a 2013 study, those model practices were only haltingly adopted. In particular, many agencies did not use blind or blinded lineups, in which the administrator does not know which photo is that of a suspect or cannot view which photo the eyewitness is examining. In Fall 2018, all of the over-three hundred law enforcement agencies in Virginia had their policies on this subject requested, using the state freedom of information law. The results show that there has now been widespread adoption of the DCJS model policy. Improved eyewitness identification practices have been adopted by the vast majority of agencies, including large and small agencies. This Article concludes by asking what contributed to the extensive dissemination of a model police policy, and what its implications are for improving police policy and practice without the use of regulation

    Friction Laws for Elastic Nano-Scale Contacts

    Full text link
    The effect of surface curvature on the law relating frictional forces F with normal load L is investigated by molecular dynamics simulations as a function of surface symmetry, adhesion, and contamination. Curved, non-adhering, dry, commensurate surfaces show a linear dependency, F proportional to L, similar to dry flat commensurate or amorphous surfaces and macroscopic surfaces. In contrast, curved, non-adhering, dry, amorphous surfaces show F proportional to L^(2/3) similar to friction force microscopes. In our model, adhesive effects are most adequately described by the Hertz plus offset model, as the simulations are confined to small contact radii. Curved lubricated or contaminated surfaces show again different behavior; details depend on how much of the contaminant gets squeezed out of the contact. Also, it is seen that the friction force in the lubricated case is mainly due to atoms at the entrance of the tip.Comment: 7 pages, 5 figures, submitted to Europhys. Let

    Rubber friction on wet and dry road surfaces: the sealing effect

    Full text link
    Rubber friction on wet rough substrates at low velocities is typically 20-30% smaller than for the corresponding dry surfaces. We show that this cannot be due to hydrodynamics and propose a novel explanation based on a sealing effect exerted by rubber on substrate "pools" filled with water. Water effectively smoothens the substrate, reducing the major friction contribution due to induced viscoelastic deformations of the rubber by surface asperities. The theory is illustrated with applications related to tire-road friction.Comment: Format Revtex 4; 8 pages, 11 figures (no color); Published on Phys. Rev. B (http://link.aps.org/abstract/PRB/v71/e035428); previous work on the same topic: cond-mat/041204
    corecore