11,047 research outputs found

    Young and middle age pulsar light-curve morphology: Comparison of Fermi observations with gamma-ray and radio emission geometries

    Full text link
    Thanks to the huge amount of gamma-ray pulsar photons collected by the Fermi Large Area Telescope since June 2008, it is now possible to constrain gamma-ray geometrical models by comparing simulated and observed light-curve morphological characteristics. We assumed vacuum-retarded dipole pulsar magnetic field and tested simulated and observed morphological light-curve characteristics in the framework of two pole emission geometries, Polar Cap (PC), radio, and Slot Gap (SG), and Outer Gap (OG)/One Pole Caustic (OPC) emission geometries. We compared simulated and observed/estimated light-curve morphological parameters as a function of observable and non-observable pulsar parameters. The PC model gives the poorest description of the LAT pulsar light-curve morphology. The OPC best explains both the observed gamma-ray peak multiplicity and shape classes. The OPC and SG models describe the observed gamma-ray peak-separation distribution for low- and high-peak separations, respectively. This suggests that the OPC geometry best explains the single-peak structure but does not manage to describe the widely separated peaks predicted in the framework of the SG model as the emission from the two magnetic hemispheres. The OPC radio-lag distribution shows higher agreement with observations suggesting that assuming polar radio emission, the gamma-ray emission regions are likely to be located in the outer magnetosphere. The larger agreement between simulated and LAT estimations in the framework of the OPC suggests that the OPC model best predicts the observed variety of profile shapes. The larger agreement between observations and the OPC model jointly with the need to explain the abundant 0.5 separated peaks with two-pole emission geometries, calls for thin OPC gaps to explain the single-peak geometry but highlights the need of two-pole caustic emission geometry to explain widely separated peaks.Comment: 28 pages, 20 figures, 8 tables; accepted for publication in Astronomy and Astrophysic

    Rotational velocities of A-type stars II. Measurement of vsini in the northern hemisphere

    Full text link
    This work is the second part of the set of measurements of vsini for A-type stars, begun by Royer et al. (2002). Spectra of 249 B8 to F2-type stars brighter than V=7 have been collected at Observatoire de Haute-Provence (OHP). Fourier transforms of several line profiles in the range 4200--4600 A are used to derive vsini from the frequency of the first zero. Statistical analysis of the sample indicates that measurement error mainly depends on vsini and this relative error of the rotational velocity is found to be about 5% on average. The systematic shift with respect to standard values from Slettebak et al. (1975), previously found in the first paper, is here confirmed. Comparisons with data from the literature agree with our findings: vsini values from Slettebak et al. are underestimated and the relation between both scales follows a linear law: vsini(new) = 1.03 vsini(old) + 7.7. Finally, these data are combined with those from the previous paper (Royer et al. 2002), together with the catalogue of Abt & Morrell (1995). The resulting sample includes some 2150 stars with homogenized rotational velocities.Comment: 16 pages, includes 13 figures, accepted in A&

    Cosmic-ray propagation properties for an origin in SNRs

    Full text link
    We have studied the impact of cosmic-ray acceleration in SNR on the spectra of cosmic-ray nuclei in the Galaxy using a series expansion of the propagation equation, which allows us to use analytical solutions for part of the problem and an efficient numerical treatment of the remaining equations and thus accurately describes the cosmic-ray propagation on small scales around their sources in three spatial dimensions and time. We found strong variations of the cosmic-ray nuclei flux by typically 20% with occasional spikes of much higher amplitude, but only minor changes in the spectral distribution. The locally measured spectra of primary cosmic rays fit well into the obtained range of possible spectra. We further showed that the spectra of the secondary element Boron show almost no variations, so that the above findings also imply significant fluctuations of the Boron-to-Carbon ratio. Therefore the commonly used method of determining CR propagation parameters by fitting secondary-to-primary ratios appears flawed on account of the variations that these ratios would show throughout the Galaxy.Comment: Accepted for publication in Ap

    Light-curve modelling constraints on the obliquities and aspect angles of the young Fermi pulsars

    Get PDF
    In more than four years of observation the Large Area Telescope on board the Fermi satellite has identified pulsed γ\gamma-ray emission from more than 80 young pulsars, providing light curves with high statistics. Fitting the observations with geometrical models can provide estimates of the magnetic obliquity α\alpha and aspect angle ζ\zeta, yielding estimates of the radiation beaming factor and luminosity. Using γ\gamma-ray emission geometries (Polar Cap, Slot Gap, Outer Gap, One Pole Caustic) and radio emission geometry, we fit γ\gamma-ray light curves for 76 young pulsars and we jointly fit their γ\gamma-ray plus radio light curves when possible. We find that a joint radio plus γ\gamma-ray fit strategy is important to obtain (α\alpha, ζ\zeta) estimates that can explain simultaneous radio and γ\gamma-ray emission. The intermediate-to-high altitude magnetosphere models, Slot Gap, Outer Gap, and One pole Caustic, are favoured in explaining the observations. We find no evolution of α\alpha on a time scale of a million years. For all emission geometries our derived γ\gamma-ray beaming factors are generally less than one and do not significantly evolve with the spin-down power. A more pronounced beaming factor vs. spin-down power correlation is observed for Slot Gap model and radio-quiet pulsars and for the Outer Gap model and radio-loud pulsars. For all models, the correlation between γ\gamma-ray luminosity and spin-down power is consistent with a square root dependence. The γ\gamma-ray luminosities obtained by using our beaming factors not exceed the spin-down power. This suggests that assuming a beaming factor of one for all objects, as done in other studies, likely overestimates the real values. The data show a relation between the pulsar spectral characteristics and the width of the accelerator gap that is consistent with the theoretical prediction for the Slot Gap model.Comment: 90 pages, 80 figures (63 in Appendices), accepted for publication in Astronomy and Astrophysic

    Half-ordered state in the anisotropic Haldane-gap antiferromagnet NDMAP

    Full text link
    Neutron diffraction experiments performed on the Haldane gap material NDMAP in high magnetic fields applied at an angle to the principal anisotropy axes reveal two consecutive field-induced phase transitions. The low-field phase is the gapped Haldane state, while at high fields the system exhibits 3-dimensional long-range Neel order. In a peculiar phase found at intermediate fields only half of all the spin chains participate in the long-range ordering, while the other half remains disordered and gapped.Comment: 4 pages, 2 figures, submitted to Phys. Rev.

    Cooperative ordering of gapped and gapless spin networks in Cu2_2Fe2_2Ge4_4O13_{13}

    Full text link
    The unusual magnetic properties of a novel low-dimensional quantum ferrimagnet Cu2_2Fe2_2Ge4_4O13_{13} are studied using bulk methods, neutron diffraction and inelastic neutron scattering. It is shown that this material can be described in terms of two low-dimensional quantum spin subsystems, one gapped and the other gapless, characterized by two distinct energy scales. Long-range magnetic ordering observed at low temperatures is a cooperative phenomenon caused by weak coupling of these two spin networks.Comment: 4 pages, 4 figure

    Absolute magnitudes and kinematics of CP stars from Hipparcos data

    Get PDF
    The position in the HR diagram and the kinematic characteristics of different kinds of CP stars of the upper main sequence are obtained using the LM method (Luri et al., 1996). Most of the CP stars are main sequence stars occupying the whole width of the sequence. From a kinematic point of view, they belong to the young disk population (ages < 1.5 Gyr). It has also been found that, on kinematic grounds, the behaviour of lambda Bootis stars is similar to the one observed for normal stars of the same spectral range. On the other hand, roAp and noAp stars show the same kinematic characteristics. The peculiar velocity distribution function has been decomposed into a sum of three dimensional gaussians and the presence of Pleiades, Sirius and Hyades moving groups has been clearly established. Finally, a small number of CP stars are found to be high-velocity objects.Comment: 8 pages, 1 figure, to appear in: Proc. of the 26th workshop of the European Working Group on CP stars, eds. P. North, A. Schnell and J. Ziznovsky, Contrib. Astr. Obs. Skalnate Pleso Vol. 27, No

    Fermi-LAT Observations of High- and Intermediate-Velocity Clouds: Tracing Cosmic Rays in the Halo of the Milky Way

    Full text link
    It is widely accepted that cosmic rays (CRs) up to at least PeV energies are Galactic in origin. Accelerated particles are injected into the interstellar medium where they propagate to the farthest reaches of the Milky Way, including a surrounding halo. The composition of CRs coming to the solar system can be measured directly and has been used to infer the details of CR propagation that are extrapolated to the whole Galaxy. In contrast, indirect methods, such as observations of gamma-ray emission from CR interactions with interstellar gas, have been employed to directly probe the CR densities in distant locations throughout the Galactic plane. In this article we use 73 months of data from the Fermi Large Area Telescope in the energy range between 300 MeV and 10 GeV to search for gamma-ray emission produced by CR interactions in several high- and intermediate-velocity clouds located at up to ~ 7 kpc above the Galactic plane. We achieve the first detection of intermediate-velocity clouds in gamma rays and set upper limits on the emission from the remaining targets, thereby tracing the distribution of CR nuclei in the halo for the first time. We find that the gamma-ray emissivity per H atom decreases with increasing distance from the plane at 97.5% confidence level. This corroborates the notion that CRs at the relevant energies originate in the Galactic disk. The emissivity of the upper intermediate-velocity Arch hints at a 50% decline of CR densities within 2 kpc from the plane. We compare our results to predictions of CR propagation models.Comment: Accepted for publication in the Astrophysical Journa
    corecore