29 research outputs found
Extended Repetitive Transcranial Magnetic Stimulation Therapy for Post-stroke Depression in a Patient With a Pre-frontal Cortical Lesion: A Case Study
Approximately one-third of stroke survivors experience post-stroke depression. Repetitive transcranial magnetic stimulation (rTMS) of the prefrontal cortex has shown promise as a treatment for depression with few side effects and high tolerability. However, previous post-stroke depression trials have not considered the effect of lesion location, the persistence of clinical improvements, nor the value of ongoing maintenance treatments. These questions are important to determine the therapeutic value of rTMS as a treatment for post-stroke depression. We report a unique case study of a 71-year-old male who had experienced a left hemispheric ischemic stroke 4 years prior. The patient was screened with the Beck Depression Inventory and Patient Health Questionnaire and found to be experiencing moderate levels of depression. Ten daily sessions of left dorsolateral pre-frontal cortex rTMS were applied over a two-week period. A clinically meaningful reduction in depression was achieved. Approximately 10 weeks following rTMS treatment, improvements in depression were attenuating. Weekly maintenance rTMS was delivered to the left dorsolateral pre-frontal cortex for 10 sessions. At the conclusion of maintenance rTMS, clinical assessments indicated depressive symptoms had reduced to a minimal to nil level. Clinically meaningful improvements in depression were maintained at 3 months after rTMS treatment had ceased. These findings provide novel insight to suggest rTMS may reduce depressive symptoms in stroke survivors with a lesion at the site of stimulation. Ongoingmaintenance treatmentsmight prove beneficial to enhance persistence of clinical improvements.Brenton Hordacre, Anson Chau, Lynton Graetz, and Susan Hillie
Plasticity and dystonia: a hypothesis shrouded in variability.
Studying plasticity mechanisms with Professor John Rothwell was a shared highlight of our careers. In this article, we discuss non-invasive brain stimulation techniques which aim to induce and quantify plasticity, the mechanisms and nature of their inherent variability and use such observations to review the idea that excessive and abnormal plasticity is a pathophysiological substrate of dystonia. We have tried to define the tone of our review by a couple of Professor John Rothwell's many inspiring characteristics; his endless curiosity to refine knowledge and disease models by scientific exploration and his wise yet humble readiness to revise scientific doctrines when the evidence is supportive. We conclude that high variability of response to non-invasive brain stimulation plasticity protocols significantly clouds the interpretation of historical findings in dystonia research. There is an opportunity to wipe the slate clean of assumptions and armed with an informative literature in health, re-evaluate whether excessive plasticity has a causal role in the pathophysiology of dystonia
Chronic Stroke Sensorimotor Impairment Is Related to Smaller Hippocampal Volumes: An ENIGMA Analysis
Background.
Persistent sensorimotor impairments after stroke can negatively impact quality of life. The hippocampus is vulnerable to poststroke secondary degeneration and is involved in sensorimotor behavior but has not been widely studied within the context of poststroke upperâlimb sensorimotor impairment. We investigated associations between nonâlesioned hippocampal volume and upper limb sensorimotor impairment in people with chronic stroke, hypothesizing that smaller ipsilesional hippocampal volumes would be associated with greater sensorimotor impairment.
Methods and Results.
Crossâsectional T1âweighted magnetic resonance images of the brain were pooled from 357 participants with chronic stroke from 18 research cohorts of the ENIGMA (Enhancing NeuoImaging Genetics through MetaâAnalysis) Stroke Recovery Working Group. Sensorimotor impairment was estimated from the FMAâUE (FuglâMeyer Assessment of Upper Extremity). Robust mixedâeffects linear models were used to test associations between poststroke sensorimotor impairment and hippocampal volumes (ipsilesional and contralesional separately; Bonferroniâcorrected, P<0.025), controlling for age, sex, lesion volume, and lesioned hemisphere. In exploratory analyses, we tested for a sensorimotor impairment and sex interaction and relationships between lesion volume, sensorimotor damage, and hippocampal volume. Greater sensorimotor impairment was significantly associated with ipsilesional (P=0.005; ÎČ=0.16) but not contralesional (P=0.96; ÎČ=0.003) hippocampal volume, independent of lesion volume and other covariates (P=0.001; ÎČ=0.26). Women showed progressively worsening sensorimotor impairment with smaller ipsilesional (P=0.008; ÎČ=â0.26) and contralesional (P=0.006; ÎČ=â0.27) hippocampal volumes compared with men. Hippocampal volume was associated with lesion size (P<0.001; ÎČ=â0.21) and extent of sensorimotor damage (P=0.003; ÎČ=â0.15).
Conclusions.
The present study identifies novel associations between chronic poststroke sensorimotor impairment and ipsilesional hippocampal volume that are not caused by lesion size and may be stronger in women.S.-L.L. is supported by NIH K01 HD091283; NIH R01 NS115845. A.B. and M.S.K. are supported by National Health and Medical Research Council (NHMRC) GNT1020526, GNT1045617 (A.B.), GNT1094974, and Heart Foundation Future Leader Fellowship 100784 (A.B.). P.M.T. is supported by NIH U54 EB020403. L.A.B. is supported by the Canadian Institutes of Health Research (CIHR). C.M.B. is supported by NIH R21 HD067906. W.D.B. is supported by the Heath Research Council of New Zealand. J.M.C. is supported by NIH R00HD091375. A.B.C. is supported by NIH R01NS076348-01, Hospital Israelita Albert Einstein 2250-14, CNPq/305568/2016-7. A.N.D. is supported by funding provided by the Texas Legislature to the Lone Star Stroke Clinical Trial Network. Its contents are solely the responsibility of the authors and do not necessarily represent the of ficial views of the Government of the United States or the State of Texas. N.E.-B. is supported by Australian Research Council NIH DE180100893. W.F. is sup ported by NIH P20 GM109040. F.G. is supported by Wellcome Trust (093957). B.H. is funded by and NHMRC fellowship (1125054). S.A.K is supported by NIH P20 HD109040. F.B. is supported by Italian Ministry of Health, RC 20, 21. N.S. is supported by NIH R21NS120274. N.J.S. is supported by NIH/National Institute of General Medical Sciences (NIGMS) 2P20GM109040-06, U54-GM104941. S.R.S. is supported by European Research Council (ERC) (NGBMI, 759370). G.S. is supported by Italian Ministry of Health RC 18-19-20-21A. M.T. is sup ported by National Institute of Neurological Disorders and Stroke (NINDS) R01 NS110696. G.T.T. is supported by Temple University sub-award of NIH R24 âNHLBI (Dr Mickey Selzer) Center for Experimental Neurorehabilitation Training. N.J.S. is funded by NIH/National Institute of Child Health and Human Development (NICHD) 1R01HD094731-01A1
Smaller spared subcortical nuclei are associated with worse post-stroke sensorimotor outcomes in 28 cohorts worldwide
Up to two-thirds of stroke survivors experience persistent sensorimotor impairments. Recovery relies on the integrity of spared brain areas to compensate for damaged tissue. Deep grey matter structures play a critical role in the control and regulation of sensorimotor circuits. The goal of this work is to identify associations between volumes of spared subcortical nuclei and sensorimotor behaviour at different timepoints after stroke. We pooled high-resolution T1-weighted MRI brain scans and behavioural data in 828 individuals with unilateral stroke from 28 cohorts worldwide. Cross-sectional analyses using linear mixed-effects models related post-stroke sensorimotor behaviour to non-lesioned subcortical volumes (Bonferroni-corrected, Pâ<â0.004). We tested subacute (â€90âdays) and chronic (â„180âdays) stroke subgroups separately, with exploratory analyses in early stroke (â€21âdays) and across all time. Sub-analyses in chronic stroke were also performed based on class of sensorimotor deficits (impairment, activity limitations) and side of lesioned hemisphere. Worse sensorimotor behaviour was associated with a smaller ipsilesional thalamic volume in both early (nâ=â179; dâ=â0.68) and subacute (nâ=â274, dâ=â0.46) stroke. In chronic stroke (nâ=â404), worse sensorimotor behaviour was associated with smaller ipsilesional putamen (dâ=â0.52) and nucleus accumbens (dâ=â0.39) volumes, and a larger ipsilesional lateral ventricle (dâ=â-0.42). Worse chronic sensorimotor impairment specifically (measured by the Fugl-Meyer Assessment; nâ=â256) was associated with smaller ipsilesional putamen (dâ=â0.72) and larger lateral ventricle (dâ=â-0.41) volumes, while several measures of activity limitations (nâ=â116) showed no significant relationships. In the full cohort across all time (nâ=â828), sensorimotor behaviour was associated with the volumes of the ipsilesional nucleus accumbens (dâ=â0.23), putamen (dâ=â0.33), thalamus (dâ=â0.33) and lateral ventricle (dâ=â-0.23). We demonstrate significant relationships between post-stroke sensorimotor behaviour and reduced volumes of deep grey matter structures that were spared by stroke, which differ by time and class of sensorimotor measure. These findings provide additional insight into how different cortico-thalamo-striatal circuits support post-stroke sensorimotor outcomes
Transient ischaemic attack (TIA) knowledge in general practice: a cross-sectional study of Western Adelaide general practitioners
Extent: 9p.Background: With evidence to support early assessment and management of TIAs, the role of the general practitioner (GP) needs to be considered in developing a TIA service in Western Adelaide. We thus aimed to determine GP knowledge of TIA assessment and management and identify perceived barriers, in order to tailor subsequent GP education and engage primary care in the co-ordinated care of TIA patients. Findings: A self-administered questionnaire was mailed to all GPs (n = 202) in the Adelaide Western General Practice Network. Response frequencies were calculated for all variables, and associations examined by univariate analysis. 32 GPs responded. All respondents correctly identified early risk of stroke following a TIA. Difficulty accessing neurological expertise was identified as a barrier (40.6 %), as was a lack of GP knowledge (18.8 %). Areas for improvement included access to neurologists (36.7 %), relevant guidelines and education (43.3 %). Conclusions: Diagnosis of TIA is difficult and this study highlights the need for further education and practical guidelines for GPs. With this training, GPs could be better equipped to assess and manage TIAs effectively in the community in consultation with stroke physicians.Elaine Stephanie Leung, Monica Anne Hamilton-Bruce, Cate Price and Simon A. Kobla
Chronic stroke sensorimotor impairment is related to smaller hippocampal volumes: an ENIGMA analysis
Background Persistent sensorimotor impairments after stroke can negatively impact quality of life. The hippocampus is vulnerable to poststroke secondary degeneration and is involved in sensorimotor behavior but has not been widely studied within the context of poststroke upperâlimb sensorimotor impairment. We investigated associations between nonâlesioned hippocampal volume and upper limb sensorimotor impairment in people with chronic stroke, hypothesizing that smaller ipsilesional hippocampal volumes would be associated with greater sensorimotor impairment. Methods and Results Crossâsectional T1âweighted magnetic resonance images of the brain were pooled from 357 participants with chronic stroke from 18 research cohorts of the ENIGMA (Enhancing NeuoImaging Genetics through MetaâAnalysis) Stroke Recovery Working Group. Sensorimotor impairment was estimated from the FMAâUE (FuglâMeyer Assessment of Upper Extremity). Robust mixedâeffects linear models were used to test associations between poststroke sensorimotor impairment and hippocampal volumes (ipsilesional and contralesional separately; Bonferroniâcorrected, P<0.025), controlling for age, sex, lesion volume, and lesioned hemisphere. In exploratory analyses, we tested for a sensorimotor impairment and sex interaction and relationships between lesion volume, sensorimotor damage, and hippocampal volume. Greater sensorimotor impairment was significantly associated with ipsilesional (P=0.005; ÎČ=0.16) but not contralesional (P=0.96; ÎČ=0.003) hippocampal volume, independent of lesion volume and other covariates (P=0.001; ÎČ=0.26). Women showed progressively worsening sensorimotor impairment with smaller ipsilesional (P=0.008; ÎČ=â0.26) and contralesional (P=0.006; ÎČ=â0.27) hippocampal volumes compared with men. Hippocampal volume was associated with lesion size (P<0.001; ÎČ=â0.21) and extent of sensorimotor damage (P=0.003; ÎČ=â0.15). Conclusions The present study identifies novel associations between chronic poststroke sensorimotor impairment and ipsilesional hippocampal volume that are not caused by lesion size and may be stronger in women
Association of Brain Age, Lesion Volume, and Functional Outcome in Patients With Stroke
BACKGROUND AND OBJECTIVES: Functional outcomes after stroke are strongly related to focal injury measures. However, the role of global brain health is less clear. In this study, we examined the impact of brain age, a measure of neurobiological aging derived from whole-brain structural neuroimaging, on poststroke outcomes, with a focus on sensorimotor performance. We hypothesized that more lesion damage would result in older brain age, which would in turn be associated with poorer outcomes. Related, we expected that brain age would mediate the relationship between lesion damage and outcomes. Finally, we hypothesized that structural brain resilience, which we define in the context of stroke as younger brain age given matched lesion damage, would differentiate people with good vs poor outcomes.
METHODS: We conducted a cross-sectional observational study using a multisite dataset of 3-dimensional brain structural MRIs and clinical measures from the ENIGMA Stroke Recovery. Brain age was calculated from 77 neuroanatomical features using a ridge regression model trained and validated on 4,314 healthy controls. We performed a 3-step mediation analysis with robust mixed-effects linear regression models to examine relationships between brain age, lesion damage, and stroke outcomes. We used propensity score matching and logistic regression to examine whether brain resilience predicts good vs poor outcomes in patients with matched lesion damage.
RESULTS: We examined 963 patients across 38 cohorts. Greater lesion damage was associated with older brain age (ÎČ = 0.21; 95% CI 0.04-0.38,
DISCUSSION: We provide evidence that younger brain age is associated with superior poststroke outcomes and modifies the impact of focal damage. The inclusion of imaging-based assessments of brain age and brain resilience may improve the prediction of poststroke outcomes compared with focal injury measures alone, opening new possibilities for potential therapeutic targets
26th Annual Computational Neuroscience Meeting (CNS*2017): Part 3 - Meeting Abstracts - Antwerp, Belgium. 15â20 July 2017
This work was produced as part of the activities of FAPESP Research,\ud
Disseminations and Innovation Center for Neuromathematics (grant\ud
2013/07699-0, S. Paulo Research Foundation). NLK is supported by a\ud
FAPESP postdoctoral fellowship (grant 2016/03855-5). ACR is partially\ud
supported by a CNPq fellowship (grant 306251/2014-0)