618 research outputs found

    Integration of Action and Language Knowledge: A Roadmap for Developmental Robotics

    Get PDF
    “This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder." “Copyright IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.”This position paper proposes that the study of embodied cognitive agents, such as humanoid robots, can advance our understanding of the cognitive development of complex sensorimotor, linguistic, and social learning skills. This in turn will benefit the design of cognitive robots capable of learning to handle and manipulate objects and tools autonomously, to cooperate and communicate with other robots and humans, and to adapt their abilities to changing internal, environmental, and social conditions. Four key areas of research challenges are discussed, specifically for the issues related to the understanding of: 1) how agents learn and represent compositional actions; 2) how agents learn and represent compositional lexica; 3) the dynamics of social interaction and learning; and 4) how compositional action and language representations are integrated to bootstrap the cognitive system. The review of specific issues and progress in these areas is then translated into a practical roadmap based on a series of milestones. These milestones provide a possible set of cognitive robotics goals and test scenarios, thus acting as a research roadmap for future work on cognitive developmental robotics.Peer reviewe

    Diagrammatic Quantum Monte Carlo for Two-Body Problem: Exciton

    Get PDF
    We present a novel method for precise numerical solution of the irreducible two-body problem and apply it to excitons in solids. The approach is based on the Monte Carlo simulation of the two-body Green function specified by Feynman's diagrammatic expansion. Our method does not rely on the specific form of the electron and hole dispersion laws and is valid for any attractive electron-hole potential. We establish limits of validity of the Wannier (large radius) and Frenkel (small radius) approximations, present accurate data for the intermediate radius excitons, and give evidence for the charge transfer nature of the monopolar exciton in mixed valence materials.Comment: 4 pages, 5 figure

    Excitonic Effects on Optical Absorption Spectra of Doped Graphene

    Full text link
    We have performed first-principles calculations to study optical absorption spectra of doped graphene with many-electron effects included. Both self-energy corrections and electron-hole interactions are reduced due to the enhanced screening in doped graphene. However, self-energy corrections and excitonic effects nearly cancel each other, making the prominent optical absorption peak fixed around 4.5 eV under different doping conditions. On the other hand, an unexpected increase of the optical absorbance is observed within the infrared and visible-light frequency regime (1 ~ 3 eV). Our analysis shows that a combining effect from the band filling and electron-hole interactions results in such an enhanced excitonic effect on the optical absorption. These unique variations of the optical absorption of doped graphene are of importance to understand relevant experiments and design optoelectronic applications.Comment: 15 pages, 5 figures; Nano Lett., Article ASAP (2011

    Ab-initio calculation of the electronic and optical excitations in polythiophene: effects of intra- and interchain screening

    Get PDF
    We present an calculation of the electronic and optical excitations of an isolated polythiophene chain as well as of bulk polythiophene. We use the GW approximation for the electronic self-energy and include excitonic effects by solving the electron-hole Bethe-Salpeter equation. The inclusion of interchain screening in the case of bulk polythiophene drastically reduces both the quasi-particle band gap and the exciton binding energies, but the optical gap is hardly affected. This finding is relevant for conjugated polymers in general.Comment: 4 pages, 1 figur

    Molecular geometry optimization with a genetic algorithm

    Full text link
    We present a method for reliably determining the lowest energy structure of an atomic cluster in an arbitrary model potential. The method is based on a genetic algorithm, which operates on a population of candidate structures to produce new candidates with lower energies. Our method dramatically outperforms simulated annealing, which we demonstrate by applying the genetic algorithm to a tight-binding model potential for carbon. With this potential, the algorithm efficiently finds fullerene cluster structures up to C60{\rm C}_{60} starting from random atomic coordinates.Comment: 4 pages REVTeX 3.0 plus 3 postscript figures; to appear in Physical Review Letters. Additional information available under "genetic algorithms" at http://www.public.iastate.edu/~deaven

    Optical absorption spectra of finite systems from a conserving Bethe-Salpeter equation approach

    Full text link
    We present a method for computing optical absorption spectra by means of a Bethe-Salpeter equation approach, which is based on a conserving linear response calculation for electron-hole coherences in the presence of an external electromagnetic field. This procedure allows, in principle, for the determination of the electron-hole correlation function self-consistently with the corresponding single-particle Green function. We analyze the general approach for a "one-shot" calculation of the photoabsorption cross section of finite systems, and discuss the importance of scattering and dephasing contributions in this approach. We apply the method to the closed-shell clusters Na_4, Na^+_9 and Na^+_(21), treating one active electron per Na atom.Comment: 9 pages, 3 figure

    Embodied language learning and cognitive bootstrapping: methods and design principles

    Get PDF
    Co-development of action, conceptualization and social interaction mutually scaffold and support each other within a virtuous feedback cycle in the development of human language in children. Within this framework, the purpose of this article is to bring together diverse but complementary accounts of research methods that jointly contribute to our understanding of cognitive development and in particular, language acquisition in robots. Thus, we include research pertaining to developmental robotics, cognitive science, psychology, linguistics and neuroscience, as well as practical computer science and engineering. The different studies are not at this stage all connected into a cohesive whole; rather, they are presented to illuminate the need for multiple different approaches that complement each other in the pursuit of understanding cognitive development in robots. Extensive experiments involving the humanoid robot iCub are reported, while human learning relevant to developmental robotics has also contributed useful results. Disparate approaches are brought together via common underlying design principles. Without claiming to model human language acquisition directly, we are nonetheless inspired by analogous development in humans and consequently, our investigations include the parallel co-development of action, conceptualization and social interaction. Though these different approaches need to ultimately be integrated into a coherent, unified body of knowledge, progress is currently also being made by pursuing individual methods

    Dispersion of the dielectric function of a charge-transfer insulator

    Full text link
    We study the problem of dielectric response in the strong coupling regime of a charge transfer insulator. The frequency and wave number dependence of the dielectric function ϵ(q,ω)\epsilon ({\bf q},\omega) and its inverse ϵ1(q,ω)\epsilon ^{-1}({\bf q},\omega) is the main object of consideration. We show that the problem, in general, cannot be reduced to a calculation within the Hubbard model, which takes into account only a restricted number of electronic states near the Fermi energy. The contribution of the rest of the system to the longitudinal response (i.e. to ϵ1(q,ω)\epsilon ^{-1}({\bf q},\omega)) is essential for the whole frequency range. With the use of the spectral representation of the two-particle Green's function we show that the problem may be divided into two parts: into the contributions of the weakly correlated and the Hubbard subsystems. For the latter we propose an approach that starts from the correlated paramagnetic ground state with strong antiferromagnetic fluctuations. We obtain a set of coupled equations of motion for the two-particle Green's function that may be solved by means of the projection technique. The solution is expressed by a two particle basis that includes the excitonic states with electron and hole separated at various distances. We apply our method to the multiband Hubbard (Emery) model that describes layered cuprates. We show that strongly dispersive branches exist in the excitonic spectrum of the 'minimal' Emery model (1/Ud=Up=tpp=01/U_d=U_p=t_{pp}=0) and consider the dependence of the spectrum on finite oxygen hopping tppt_{pp} and on-site repulsion UpU_p. The relationship of our calculations to electron energy loss spectroscopy is discussed.Comment: 22 pages, 5 figure

    X-ray Absorption Near-Edge Structure calculations with pseudopotentials. Application to K-edge in diamond and alpha-quartz

    Full text link
    We present a reciprocal-space pseudopotential scheme for calculating X-ray absorption near-edge structure (XANES) spectra. The scheme incorporates a recursive method to compute absorption cross section as a continued fraction. The continued fraction formulation of absorption is advantageous in that it permits the treatment of core-hole interaction through large supercells (hundreds of atoms). The method is compared with recently developed Bethe-Salpeter approach. The method is applied to the carbon K-edge in diamond and to the silicon and oxygen K-edges in alpha-quartz for which polarized XANES spectra were measured. Core-hole effects are investigated by varying the size of the supercell, thus leading to information similar to that obtained from cluster size analysis usually performed within multiple scattering calculations.Comment: 11 pages, 4 figure
    corecore