325,280 research outputs found
Nanocrystalline iron at high pressure
X-ray diffraction measurements were performed on nanocrystalline iron up to 46 GPa. For nanocrystalline epsilon-Fe, analysis of lattice parameter data provides a bulk modulus, K, of 179±8 GPa and a pressure derivative of the bulk modulus, K[prime], of 3.6±0.7, similar to the large-grained control sample. The extrapolated zero-pressure unit cell volume of nanocrystalline epsilon-Fe is 22.9±0.2 Å^3, compared to 22.3±0.2 Å^3 for large-grained epsilon-Fe. No significant grain growth was observed to occur under pressure
Consistency of Markov chain quasi-Monte Carlo on continuous state spaces
The random numbers driving Markov chain Monte Carlo (MCMC) simulation are
usually modeled as independent U(0,1) random variables. Tribble [Markov chain
Monte Carlo algorithms using completely uniformly distributed driving sequences
(2007) Stanford Univ.] reports substantial improvements when those random
numbers are replaced by carefully balanced inputs from completely uniformly
distributed sequences. The previous theoretical justification for using
anything other than i.i.d. U(0,1) points shows consistency for estimated means,
but only applies for discrete stationary distributions. We extend those results
to some MCMC algorithms for continuous stationary distributions. The main
motivation is the search for quasi-Monte Carlo versions of MCMC. As a side
benefit, the results also establish consistency for the usual method of using
pseudo-random numbers in place of random ones.Comment: Published in at http://dx.doi.org/10.1214/10-AOS831 the Annals of
Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical
Statistics (http://www.imstat.org
Electro-optic scanning of light coupled from a corrugated LiNbO3 waveguide
Light diffracted from a grating output coupler in a Ti-diffused LiNbO3 waveguide is scanned electro-optically. Using a coupling length of 2.5 mm in our arrangement we have demonstrated a scanning capability of one resolved spot per 3 V/µm applied field
Temperature variation of the resistivity of metallic strain gauge materials Final report
Temperature effects on electrical resistivity of metallic strain gage material
A low-power opportunistic communication protocol for wearable applications
© 2015 IEEE.Recent trends in wearable applications demand flexible architectures being able to monitor people while they move in free-living environments. Current solutions use either store-download-offline processing or simple communication schemes with real-time streaming of sensor data. This limits the applicability of wearable applications to controlled environments (e.g, clinics, homes, or laboratories), because they need to maintain connectivity with the base station throughout the monitoring process. In this paper, we present the design and implementation of an opportunistic communication framework that simplifies the general use of wearable devices in free-living environments. It relies on a low-power data collection protocol that allows the end user to opportunistically, yet seamlessly manage the transmission of sensor data. We validate the feasibility of the framework by demonstrating its use for swimming, where the normal wireless communication is constantly interfered by the environment
Normalized Ricci flow on Riemann surfaces and determinants of Laplacian
In this note we give a simple proof of the fact that the determinant of
Laplace operator in smooth metric over compact Riemann surfaces of arbitrary
genus monotonously grows under the normalized Ricci flow. Together with
results of Hamilton that under the action of the normalized Ricci flow the
smooth metric tends asymptotically to metric of constant curvature for , this leads to a simple proof of Osgood-Phillips-Sarnak theorem stating that
that within the class of smooth metrics with fixed conformal class and fixed
volume the determinant of Laplace operator is maximal on metric of constant
curvatute.Comment: a reference to paper math.DG/9904048 by W.Mueller and K.Wendland
where the main theorem of this paper was proved a few years earlier is adde
Thermodynamic consistency of liquid-gas lattice Boltzmann simulations
Lattice Boltzmann simulations have been very successful in simulating
liquid-gas and other multi-phase fluid systems. However, the underlying second
order analysis of the equation of motion has long been known to be insufficient
to consistently derive the fourth order terms that are necessary to represent
an extended interface. These same terms are also responsible for thermodynamic
consistency, i.e. to obtain a true equilibrium solution with both a constant
chemical potential and a constant pressure. In this article we present an
equilibrium analysis of non-ideal lattice Boltzmann methods of sufficient order
to identify those higher order terms that lead to a lack of thermodynamic
consistency. We then introduce a thermodynamically consistent forcing method.Comment: 12 pages, 8 figure
Hidden and Generalized Conformal Symmetry of Kerr-Sen Spacetimes
It is recently conjectured that generic non-extremal Kerr black hole could be
holographically dual to a hidden conformal field theory in two dimensions.
Moreover, it is known that there are two CFT duals (pictures) to describe the
charged rotating black holes which correspond to angular momentum and
electric charge of the black hole. Furthermore these two pictures can be
incorporated by the CFT duals (general picture) that are generated by
modular group. The general conformal structure can be
revealed by looking at charged scalar wave equation in some appropriate values
of frequency and charge. In this regard, we consider the wave equation of a
charged massless scalar field in background of Kerr-Sen black hole and show in
the "near region", the wave equation can be reproduced by the Casimir operator
of a local hidden conformal
symmetry. We can find the exact agreement between macroscopic and microscopic
physical quantities like entropy and absorption cross section of scalars for
Kerr-Sen black hole. We then find an extension of vector fields that in turn
yields an extended local family of hidden conformal symmetries, parameterized by one
parameter. For some special values of the parameter, we find a copy of
hidden conformal algebra for the charged
Gibbons-Maeda-Garfinkle-Horowitz-Strominger black hole in the strong deflection
limit.Comment: 16 pages, new material and results added, extensive improvements in
interpretation of results, references adde
2D continuous spectrum of shear Alfven waves in the presence of a magnetic island
The radial structure of the continuous spectrum of shear Alfven modes is
calculated in the presence of a magnetic island in tokamak plasmas. Modes with
the same helicity of the magnetic island are considered in a slab model
approximation. In this framework, with an appropriate rotation of the
coordinates the problem reduces to 2 dimensions. Geometrical effects due to the
shape of the flux surface's cross section are retained to all orders. On the
other hand, we keep only curvature effects responsible of the beta induced gap
in the low-frequency part of the continuous spectrum. New continuum
accumulation points are found at the O-point of the magnetic island. The
beta-induced Alfven Eigenmodes (BAE) continuum accumulation point is found to
be positioned at the separatrix flux surface. The most remarkable result is the
nonlinear modification of the BAE continuum accumulation point frequency
Design procedure for low-drag subsonic airfoils
Airfoil has least amount of drag under given restrictions of boundary layer transition position, lift coefficient, thickness ratio, and Reynolds number based on airfoil chord. It is suitable for use as wing and propeller aircraft sections operating at subsonic speeds and for hydrofoil sections and blades for fans, compressors, turbines, and windmills
- …
