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Abstract

Some transition metal alloys used in strain gauges, have resistivi-
ties which are large and vary much more slowly with temperature than usual
metals. In an attempt to understand the lack of temperature dependence of
these high resistivity alloys the theory of the deformation potential inter-
action between an electron and a longitudinal phonon was extended into the
high collision rate regime. It is demonstrated that if the deformation potential
decreases with increasing collision rate then the resistivity should become
independent of temperature. It was found however, that the deformation potential
was even more independent of electron collision rate than previously reported.
As a consequence this effect cannot account for the ébserved lack of température

dependence of the alloys of interest.
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I. Introduction

In a narrow concentration range CuXwNi (x 2 .60) alloys have a high

l-x
resistance with a very small temperature variation. There are other transi-
tion metal alloys which behave in a similar fashion. These properties are
just those required for good strain gauge materials. The alloys involved
are concentrated and the constituents 'have quite different atomic potentials.
Hence the "impurity" scattering is so strong, that it must be included in
the band structure i.e. as part of the unperturbed Hamiltonian. This is a
difficult problem, but the methods to attack it are beginning to be

4 (D,(2),3),®

develope In addition to this major problem, the combination
of band structure and "impurity' scattering, it is also necessary to under-
stand why the usual electron-phonon contribution to the resistivity is absent.
The electron-phonon contribution normally leads to room temperature resistivi-
ties in the range of 1>10 yQ-cm., and the observed resistivity of Cu0.6—NiO.4
is v 50 yf~cm. But even so, the observed temperature variation of the Cu-Ni
alloy(s) Q" lO-ZuQ—cm./°K) is much smaller than one would guess from the usual
way of combining resistivities, i.e. adding the impurity resistivity P1 to the
phonon resistivity Pps P = pI+ Pp- The purpose of the work being reported here
was to investigate a mechanism which would quench the electron-phonon inter-
actions (the deformation potentia1(6)’(7)) if scattering rates get sufficiently
high. This would have the effect of reducing the temperature variation of the
phonon part of the resistivity to bring our expectations into agreement with
experiment. The effect we were seeking does occur, however due to a peculiarity
in the make up of the deformation potential it does not occur for the range

of parameters which are encountered. The virtue of the present calculations

is that it extends the range of validity of the deformation potential (and




the Born-Oppenheimer approximation) far beyond the realm for which it was

formerly thought to be wvalid.

II. The Deformation Potential

The deformation potential is the change of the energy of an electron
in the presence of a phonon relative to its energy in the perfect undisturbed
crystal. In a metal the major contribution to the deformation potential

{
arises because the electrons do not follow the motion of the ions perfectly
and as a consequence a longitudinal phonon produces an electrical potential,
(in the Coulomb gauge a transverse phonon produces a vector potential). A
single electron moves in this electrical potential caused by all the other
electrons and the distorted ion lattice and the energy of interaction consti-
tutes an extra term in the one electron Hamiltonian. We shall derive the
deformation potential by generalizing arguments which have been developed for

(7, (8),(9)

the theory of acoustic attenuation The acoustic attenuation
theory is modified here in two ways; first the effect of a phonon on band
structure is formally introduced into the theory, and second the solution method

(10) is replaced by one

previously used, i.e. the Champers trajectory method,
in which the physical approxiﬁations are more evident. The theory is semi-
classical and in outline proceeds as follows. A Boltzmann equation for the
temporal and spacial dependence of the electron distribution function with a
collision time approximation is introduced. A phonon acts as an external driving
force in this equation. The Boltzmann equation is solved self consfétantly, with
Maxwell's equations to yield a deformation potential. The resulting deformation
potential is an explicit function of the collision time which was introduced

into the Boltzmann equation. The deformation potential can then be used along

with time dependent perturbation theory to calculate the collision time. This

leads to an implicit expression for the collision time which can then be solved




self consistently. It turns out that as collision rates become faster, the
deformation potential tends to decrease, causing the collision rates to saturate.
Thus the temperature variation of the resistivity would tend to be quenched.
Unfortunately, the deformation potential does not begin to decrease as a
function of collision rate until the product of the electron mean free path A
times the phonon wave vector q becomes of order of the ratio of velocity of
sound v, to the Fermi velocity Vs gl v VS/VF N 10—3 rather than the previously

(11) For the phonons which do most of the electron

reported condition of qA v 1.
scattering qM does get to be & 1 in transition metal alloys but never becomes
4y 10-3. Hence, while this temperature quenching occurs in principle, it cannot

be the cause of the observed lack of temperature dependence of some transition

metal alloys.

III. Calculation of the Deformation Potential

Only the longitudinal phonon-electron interaction will be discussed.
Most of the electron scattering is due to longitudinal phonons. We shall see
that the interaction between the electrons and the longitudinal phonons does
not change when gA v 1. The transverse phonon-electron interaction may change
when gA v 1. However this is relatively uninteresting since it cannot account
for the observed lack of temperature variation of the resistivity in transition
metal alloys.

The Boltzmann equation governs the temporal and spatial variation of

] 3 3 3 '+ + » 4 +
the electron concentration distribution f(r, k;t). The function f(r, k; t)
is the number of electrons per unit volume per unit (wave number)3 at point r,
-+ > > .

with wave vector k (crystal momentum p = fik), at time t. The Boltzmann

equation in the collision time approximation is:




e o
1) afGE, k0 Bk B - E G0
de T
_ 3 P df L Hk  Bf
ot A m#*

where fﬁ.e.(;’ K; t) is the local equilibrium distribution to which electron
collisions tend to drive the system, and % is the external force on the
electrons caused by the phonon. The Boltzmann equation is only expected to
be valid in the limit of long wave length phonons. For phonons whose wave
lengths are comparable to interatomic spacings, this picture cannot yield

accurate answers, however it should indicate tremnds. At any point in space

-+ > >
the electron concentration n(r, t) is related to £(r, k, t) through the expression

2) n(, t) = Jdka<’£, K t)

In thermodynamic equilibrium and in the absence of a phonon the distribution

function fe(i) is . a Fermi distribution:

1 1
3 B(e> - w)
hw e k +1

-

3) fe(iZ) -

and the equilibrium electron concentration n is:

=1 43 i
4) m = | dk £_(k)

Eq. (&) determines uo, the Fermi energy. € 3 is the unperturbed energy as a
. k
function of k, i.e., the band structure.

Suppose a longitudinal phonon with which the electron interacts has wave num-~

-3
ber q and frequency . Then the displacement (complex) E(;, t) of an ion




e
relative to its equilibrium position, and velocity u(r, t) of this ion located

pEs
at v and at time t can be expressed as

-5 5 +-+ P
T, t) = sgelld’r — we)
5)
> > > i(a.7
u(r, t) = Suel(q'r = wt)
-5
where 63 = -iwdg,

N "N

and the unit vectors 62, Su and a are equal, 62 = fu = q. The local equili-

brium distribution fz e into which collisions (either with other phonons or

.

with impurities) tends to drive the electrons is a drifted Fermi distribution:

6) £ (F, % )=
bees i’ Blep, ©-uGE, DU, ©)]
e + 1
with
7 nlE, t) = | dk £, G & 1)

- > :
ez(r, t) is the band structure at r, t as changed by the presence of the

(6)

-5
honon. €p(r, t) can be calculated from band structure theory and we shall
P k

> >
accept it as an input to this calculation. The term —mvi'u(r, t), with
5
5 laek o
Vi = § T s is introduced to account for the fact that the electrons move
ok
N
relative to a fixed reference frame (k is in the fixed reference frame) and
in the presence of a phonon the lattice is in motion. The energy in the

Fermi function, £ s has been linearized with respect to small quantities,

fL.e.

so terms proportional to u2 have been droped. Thus collisions will try to




drive the electron distribution into one which moves with the lattice.
Finally the distribution is called "local equilibrium" because the Fermi
energy level u(?, t) to which collisions drive the system is determined
from the restriction imposed by Eq. 7. So the Fermi level is the appropri-
ate one for the local band structure and the local electron concentration.

-
The external force on an electron F, in Eq. (1), is given by a Hamiltonian

equation,

—

> Bsi(r, t) >

8) F = =———F— + €k

or

3e, (¥, t)
The first term in Eq. (8) - e arises becuase the band structure energy
or

-~
is position dependent. The second term eE is the electric force. The field

-3
E is calculated self-consistently from Poisson's equation

9) K

S . E = 4reln(r, )~ n &, )]
or .

All the equations needed to solve the problem have now been introduced.

The solution to the set of equatioms, Eq. (l),(2),(6),§7),(8),(9),
in the linear approximation is characterized by all ?ariables oscillating about
their equilibrium with changes in values propbrtional to the séme spatial and

> >
temporal factox el(q'r - wt). Thus the various quantities can be written as:

> > e > (o
10)  f£(r, k; t) = £,(k) + sf(hyel(@r — wt)

i(g'; - Wt}

-).
n(r, t) = n + 6n e

( )
> + i{qr - Wt
n ¥ t = n 60 e q
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F, (R r) = £ () +8F, (k) etlWT 0B

L =1

e e e
> o e:x.(q-r - wt)

- o { > >
ex(r, t) = er + GGK e (q'r - wt)

Eqs. (3),(6),(7),(10) combine to yield:

1) 6, = (Sep - u - mvy -8u)

where because the Fermi distribution cuts off sharply

Sfe 1
= 2 - —= §(e} - u°)
aek 4“3 eﬁ

12)
and 6y is fixed by

13)  6n = sz_e.dg'k = -){(eF> [Be,, - 6ul

The quanity

_ 1 dSy -
R el

is the density of states per unit energy range at the Fermi surface, dSF is

.
an element of area in k space on the Fermi surface and VKF is the speed of the

-
electrons with wave number kF’ and the energy

15) GEF F kF F

[11]
17>
O
9
[~ 1
[ 7]




is the electron energy change averaged over the Fermi surface. In the special
2.2
case of a parabolic band, i.e. a% = omE then the Fermi surface dis spherical

and

A m*kF 3no
17) N(EF) = ﬂz = —ZE-F‘

18) Se, = 8eg .

By

Eq. 13 relates the shift in the Fermi energy i to the locally shifted electron

density 6n and an average band structure change ng . If Eqs. (10),(13) are

-> > of
inserted into Egqs. (1),(9), and only linear terms retained i.e. L 23 E'E R
S AL Y4

> O [ae++ﬂi (QP--EE—I-)] {qeA +[8e - Se,, - OB nvee 67
19)  8£(k) = 3o KT 2w W 1q kK™ %% T T ™%
k =
1 - iwt + iq-A
where
> -
20) A Z VT o= the mean free path of an electron with velocity vi

and

L -
21) g = (4ﬂe2){)2 = (Fermi-Thomas shielding length) L

of

e
The term New

k
to 8f. TFor the remainder of the derivation all'quantities will be evaluated

guarantees that only electrons near the Fermi surface contribute

at the Fermi surface. We shall drop the subscripts "F'" everywhere.
Eq. (19) relates two unknowns 6f(§) and 6n. Note that én does not

depend on K. Thus if 6f(§) from Eq. (19) along with the expressions in
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Eq. (10) were substituted into Eq. (2), then the resulting equation can be

solved for 8n in terms of known quantities. This procedure leads to the

answer:
__..ﬂi va Su gi
6nI - Se 2 - i T 2
1+ (L+ I(1)) 35
a
where

iwT
1 - iwt - i2qA
1-iwt + iqd
Qn(l-in - iqA)

(1) =

’r
Vs
velocity Vg N 108 cm/sec is always large compared to the velocity of sound

Note that qA = ég—)(vFT) = wt>>wt. Thus in a metal, where the Fermi

s
Vg N 105 cm/sec., the terms (WwT) which arise from the phonon oscillations
(a*%fé are always small compared to those (Vql), caused by electron motion

(o %%). Thus to lowest order in (wt/qA) = (VS/VF)’ I(T) is:

24) I(T) = mqu
1- v
| tan~L (.2_0.1\___.

l—qu2

In the two interesting limits I(T) becomes

25) ’ 'éwT <<-i 5 qh<<l
;gA
I(1) = v
=3iwT =3i s s gh<<l




- 11 -

Thus IE(T)I is small compared to unity until gA becomes small enough so that
v

qhi<< ;i—. As a consequence shielding does not begin to be affected by
collisions until gA becomes of order 10_3° The numerator of Eq. (22) con-
tains three terms which arise respectively from coulomb coupling between

the electrons and ions, the shift in the Fermi level in the local equilibrium
distribution, and the drift term in the local equilibrium. ©Note that the first
two terms in the numerator are independent of the collision rate but the drift
term does depend on qA. |

The electric field E(?, t) and the electrical potential ¢(¥, t) are

related by the usual expression

26) B, t) = - 200, t)

or
N L
or using ¢(r, t) = 6¢el(q x - wt) then
T oy o 1EG )
27) oG, ) = 3;—3345—

Eq. (27),(9),(10) combine toéyield:

28) 0@, v = T WE oG, 0]

q

a
“

Finally the deformation energy caused by the longitudinal phonon with wave

-
vector g can be written as:

29) Da(r, t) = ep(r, £) + (eg(r, t)- 6%)

i-++
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This can be expressed in terms of known quantities by substituting from Egqs.

(28),(10), (22),(21).

+ 1+ I(T)) + (Se> - 8¢) - i
Dy = k 2 "k
1+ 1+ 1(0) @2
&

The total deformation energy He~p i.e. the electron-phonon interaction,

from all longitudinal phonons is:

e-p =

q

> > - >
31) H__ = z [Gnaei(q'r -we) D% eilar - wt),
q

Let's investigate D» to see where it changes character as 7 decreases. To
q N

do this, express Gez, 8€ and Su in terms of 6n First find relations between

I
each of these quantities and the lattice displacement §§. Eq. (5) already

contains the relation between du and 8§. The other quantities GnI, Gei, 8¢

i(q.F-wt) .

. R
are each proportional to the lattice dilation *%? * & =1iq-E = iq8&e

Thus we find

32) an = - inquE
én
33) 8es = iU,qlE = = Us I .
k k kK o s
o
_ _ _ 5nI
34) 8e = iUQGE = -U ——
)

where U, the energy shift of the kth electron state per unit dilation and its

(6)

average over the Fermi surface U are imputs to this theory « Substitute
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Eqs. (5),(32),(33),(34) into Eq. (30).

=8n. n_ .ﬂi . ihkv_
35) 8D, = = <—— + U ) 1+ I(T))+ (U~ U+
1 ng s k 42 k gl

2
1+ @+ () 4
9~
If this equation is now specialized to the case of a parabolic band then
using Eqgs. (17),(18) it becomes

~&n_ 2¢ 2 i2e, v
36) oD, = L ( F+U§ %) 1+ 1(1) + —= =
q“ q

3 VF

1+ (1+ I(1)) ﬂ%
e

In the usual limit qA>>1 which applies to most metals it reduces to the cus-

(6)

tomary answer

-8n 2 2
37) 8D, = L 3F‘+ U-l-z 5»-2-
g 0o 9°

2

1+

q-

where Eq. (25) has been used. In the other limit where the collisions become
fast qAél which can be reached in transition metal alloys, then Eq. (36)

along with Eq. (25) gives:

-dn 2e 2 3v 2 s
38) Sp, = L <3F~+U-£35> —i~——s—-l—AU-f€5L2—
q o ek p & g
1+ (l-i s }7\‘ ’ _q__;_ |
VF g q
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2
The rigid ion model predicts UK =« £ and somewhat better theory due to
)

F
Bardeen has U§<<€F.(ll)(lz) In either case éng remains essentlally un~
v
-3

changed until g/ becomes of order ;?» 10

1

If we simplify still further to the Bardeen case where UK<<€F

{nearly free electron case) and remember (Eq. 32) that GnI is a negative pure

imaginary number then the real and imaginary parts of GDg become:

-
Zeplon| i‘.’iLsé
39) Re[6D»] = ——r vp ql q
o+
o2 ( A) (a%/a%)
v
| ey
2
| 36p | 07 ,
40)  Im[épr] = I 3v
. ! 1+ 3% 1 +( S >
g?

A sketch of these functions from Egqs. (37),(39),(40) is in Figure 1. The

Re[GDa] reaches its peak at the same place that the Im[GDE] is half its
: v
2/aq2
initial value. This occurs for i _F L+ 92/g: . Hence for q/g<<1
qh 3vg 2/92

(g v 10_7 cm for most metals) the Re{6D+] can be ignored and the Im[6D+]

practically doesn't change. For q¢/g = 1, then Im[6D+] reaches half of its

1 2 1 _ +6 -1
initial value at — = —— "V 103. This means = — w v lO X 10 [sec ]
qh  3vg T
or T v lO—lg[sec]. This T is far faster than any found even in the highest
resistivity alloys e.g. for O v 100ufd-cm. then T ™ 10“15 sec.
v
What happened? Why is it the less restrictive condition gqA ™ ;E
F

rather than the previously reported condition gA n 1, which must be
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satisfied before the deformation potential begins to change its character.
The reason is that the magnitude of the deformation potential is dominated
by the electrical forces which cause shielding. These forces are quite
large compared to the effective forces on the electron distribution due to
collisions, even for relatively small qA v 1. The physical situation which
must be reached before the collisions begin to compete with the electric
forces is that collisions must become sufficiently fast so that in a phonon
period ( é-) an electron cannot diffuse a distance equal to a phonon wave
length (1/q). In this case collisions force the electrons to remain firmly
attached to their moving ions. The root mean square distance d(t) that an
electron diffuses in a time t is d(t) = A /(t/T) . We require d(-% )z-% s O

AVijwt 8 ( %-), or finally

41) : gh 2 —

Thus collisions cannot influence the electron distribution, and so the defor-
v ;
. s . s : .
mation potential, until gA = el However,acoustic energy loss begins to
. ‘

vary with T when qA v 1. This occurs because in the expression for acoustic
energy loss the large, T independent term n 6n which arises from the electrical .
forces causing shielding is multiplied by a small term which varies with T.
Hence the processes which begin to vary with T when qA Vv 1 are not competing
with large constant process in this case. Similarly, one also expects the
transverse phonon-electron interaction which does not compete with the
electric forces causing shieldiﬁg to change character when gA v 1.

For completeness, He—p can be expressed in terms of longitudinal

(13)

, + ,
phonon creation and annihilation operators a+ and as by remembering that

q q
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i 4
42) €= 40w a, e
q

where Oy is the mass density of the solid. Then from Eqs. (31),(32),(35)

the electron phonon interaction is:

n 2 imvgv >
= 1 * 5 (*9-—— + Uk _q_) (141 (1) )+ (U T )+ — 2 |4 oi(qer-wt)
43) He~p— 1:§:jq(26w) a#eF) F g2 kp~Up ahy >
4 L+ (+I(T)) g2
. g?
(n 2 imvy v
° .g_..) * > 7T k‘F 8
+ U (l+I ))+ Uy -U_ )= ———p—tme B
- (€F) kF 9‘2 (T))+( kF F) qAF ag e—-i (q sr~Wt)

1+(1+1% (1)) 5%
g

where for emphasis the subscript "F'" has been replaced on the appropriate

symbols.

Conclusions

The deformation potential is remarkably independent of collisions.
The main reason is that the deformation potential is controlled by the same
electrical forces which cause shielding. Collisions do not begin to affect
the electron distributions established by these electrical forces until the
distance an electron diffuses in a phonon period becomes shorter than a phonon
wave length. Under these circumstances the electrons cannot move far enough
from "their ions" in a. phonon period to set up the shielded distribution.
When the lattice disturbance is a longitudinal phonon this means the electrons
are "rigidly" attached to the ions by collisions so there is no electrical
potential established. In fact, for longitudinal phonons the ions are super-

shielded since for these very high collision rates the electrons follow the
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ions almost perfectly. If this phenomenon occurred in a physical range
of collision rates it would cause the collision rate to saturate and
become temperature independent.

Since this effect does not account for the observed phenomena,
what else could cause it? The experimental correlation between high resis-
tivities and low temperature coefficients is still suggestive. The calculation
done here is a semi-classical and single scattering theory, which may be the
source of the difficulty. The scattering rates typically encountered in
these alloys are so high that mean free paths are approaching interatomic
spacings, so that electron momentum is not a very good quantum number (or
classical concept). A better theofy will need to start from electron states
which are quite different from Bloch states. The’most promising new

(1), (2)

technique to attack this problem starts from multiple scattering
theory and then uses the "coherent potential approximation' (C.P.A.) to
solve the problem. So far, the effect of phonons on the electron transport
porperties have not been incorporated into the C.P.A. thoery. Next we plan
to investigate the effect of multiple electron scattering from concentrated

"impurities" on the electron-phonon interaction and so on the temperature

variation of the resistivity.
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Appendix A -~ Temperature Variation of the Collision Time

Since the effect to be discussed here does not occur in a physical
range of parameters only an outline of a theory will be developed. The
detailed theory could easily be constructed following this outline. We have
shown, Eqs. (27),(32), that the electron-phonon interaction He—p can be

symbolically written as

— o
A-1) He—p Hep g (1)
where the function g(T) contains the effect of collisions on the deformation
potential and is a function whose magnitude starts at unity and decreases as

T decreases. Then the "golden rule" of time dependent perturbation theory

leads to the result
1 ° 2 )
A-2) = K<T>lHe_p! e (T)]

where the appropriate average iglz is over all phonon wave numbers. The
function is sketched in Figure II. K(T) contains all the temperature dependence

and we can define a To as:

1

1 12
TO(T)

A-3) = K(T)JH;p

where TO(T) is the temperature variation of the collision time if the deforma-

tion potential were independent of T. Combining Eqs. (A-2) and (A-3) yields

T,(T)

- Te@ T

A-4)
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In Figure II, Eq. (A-4) is solved graphically. Clearly as long as lg(t)]2
remains unity T = T,(T) but when TO(T) begins to intercept the curve

. v,
(1) [2 near . F then T becomes practically independent of T (T). Thus
g P o

qh vy
under these circumstances T saturates and becomes almost independent of

temperature. Unfortunately this never occurs in a physical range of parameters

and so cannot account for the lack of temperature dependence of some transition

metal alloys e.g. copper constantan.
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