The random numbers driving Markov chain Monte Carlo (MCMC) simulation are
usually modeled as independent U(0,1) random variables. Tribble [Markov chain
Monte Carlo algorithms using completely uniformly distributed driving sequences
(2007) Stanford Univ.] reports substantial improvements when those random
numbers are replaced by carefully balanced inputs from completely uniformly
distributed sequences. The previous theoretical justification for using
anything other than i.i.d. U(0,1) points shows consistency for estimated means,
but only applies for discrete stationary distributions. We extend those results
to some MCMC algorithms for continuous stationary distributions. The main
motivation is the search for quasi-Monte Carlo versions of MCMC. As a side
benefit, the results also establish consistency for the usual method of using
pseudo-random numbers in place of random ones.Comment: Published in at http://dx.doi.org/10.1214/10-AOS831 the Annals of
Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical
Statistics (http://www.imstat.org