222 research outputs found

    Growth inhibition of thyroid follicular cell-derived cancers by the opioid growth factor (OGF) - opioid growth factor receptor (OGFr) axis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Carcinoma of the thyroid gland is an uncommon cancer, but the most frequent malignancy of the endocrine system. Most thyroid cancers are derived from the follicular cell. Follicular carcinoma (FTC) is considered more malignant than papillary thyroid carcinoma (PTC), and anaplastic thyroid cancer (ATC) is one of the most lethal human cancers. Opioid Growth Factor (OGF; chemical term - [Met<sup>5</sup>]-enkephalin) and its receptor, OGFr, form an inhibitory axis regulating cell proliferation. Both the peptide and receptor have been detected in a wide variety of cancers, and OGF is currently used clinically as a biotherapy for some non-thyroid neoplasias. This study addressed the question of whether the OGF-OGFr axis is present and functional in human thyroid follicular cell - derived cancer.</p> <p>Methods</p> <p>Utilizing human ATC (KAT-18), PTC (KTC-1), and FTC (WRO 82-1) cell lines, immunohistochemistry was employed to ascertain the presence and location of OGF and OGFr. The growth characteristics in the presence of OGF or the opioid antagonist naltrexone (NTX), and the specificity of opioid peptides for proliferation of ATC, were established in KAT-18 cells. Dependence on peptide and receptor were investigated using neutralization studies with antibodies and siRNA experiments, respectively. The mechanism of peptide action on DNA synthesis and cell survival was ascertained. The ubiquity of the OGF-OGFr axis in thyroid follicular cell-derived cancer was assessed in KTC-1 (PTC) and WRO 82-1 (FTC) tumor cells.</p> <p>Results</p> <p>OGF and OGFr were present in KAT-18 cells. Concentrations of 10<sup>-6 </sup>M OGF inhibited cell replication up to 30%, whereas NTX increased cell growth up to 35% relative to cultures treated with sterile water. OGF treatment reduced cell number by as much as 38% in KAT-18 ATC in a dose-dependent and receptor-mediated manner. OGF antibodies neutralized the inhibitory effects of OGF, and siRNA knockdown of OGFr negated growth inhibition by OGF. Cell survival was not altered by OGF, but DNA synthesis as recorded by BrdU incorporation was depressed by 28% in OGF-treated cultures compared to those exposed to sterile water. The OGF-OGFr axis was detected and functional in PTC (KTC-1) and FTC (WRO 82-1) cell lines.</p> <p>Conclusion</p> <p>These data suggest that OGF and OGFr are present in follicular-derived thyroid cancers, and that OGF serves in a tonically active inhibitory manner to maintain homeostasis of cell proliferation. These results may provide a biotherapeutic strategy in the treatment of these cancers.</p

    Enkephalin Therapy Improves Relapsing-Remitting Multiple Sclerosis

    Get PDF
    Multiple sclerosis (MS) is accompanied by decreases in serum endogenous enkephalin/endorphins and alterations in inflammatory cytokines. This retrospective analysis of serum levels was conducted in 53 patients with established relapsing-remitting MS treated with the disease-modifying therapies (DMT) glatiramer acetate, dimethyl fumarate or with the biotherapeutic low dose naltrexone (LDN) to elevate enkephalins, an off-label alternative. Opioid growth factor (OGF), an inhibitory endogenous opioid involved in modulating cellular replication, was measured and correlated to serum β-endorphin, IL-17A and TNFα. Results revealed that MS leads to a significant reduction in OGF levels in subjects on DMTs, but patients on LDN had OGF levels comparable to non-MS controls. Individuals on DMTs had significantly elevated TNFα levels, while IL-17A levels were significantly elevated only in patients taking dimethyl fumarate. A direct correlation was established between OGF and IL17A indicating a potential interaction between the OGF-OGFr axis and pro-inflammatory T-helper cells providing insight into the disease etiology

    Future feed control – Tracing banned bovine material in insect meal

    Get PDF
    In the present study, we assessed if different legacy and novel molecular analyses approaches can detect and trace prohibited bovine material in insects reared to produce processed animal protein (PAP). Newly hatched black soldier fly (BSF) larvae were fed one of the four diets for seven days; a control feeding medium (Ctl), control feed spiked with bovine hemoglobin powder (BvHb) at 1% (wet weight, w/w) (BvHb 1%, w/w), 5% (BvHb 5%, w/w) and 10% (BvHb 10%, w/w). Another dietary group of BSF larvae, namely *BvHb 10%, was first grown on BvHb 10% (w/w), and after seven days separated from the residual material and placed in another container with control diet for seven additional days. Presence of ruminant material in insect feed and in BSF larvae was assessed in five different laboratories using (i) real time-PCR analysis, (ii) multi-target ultra-high performance liquid chromatography coupled to tandem mass spectrometry (UHPLC-MS/MS), (iii) protein-centric immunoaffinity-LC-MS/MS, (iv) peptide-centric immunoaffinity-LC-MS/MS, (v) tandem mass spectral library matching (SLM), and (vi) compound specific amino acid analysis (CSIA). All methods investigated detected ruminant DNA or BvHb in specific insect feed media and in BSF larvae, respectively. However, each method assessed, displayed distinct shortcomings, which precluded detection of prohibited material versus non-prohibited ruminant material in some instances. Taken together, these findings indicate that detection of prohibited material in the insect-PAP feed chain requires a tiered combined use of complementary molecular analysis approaches. We therefore advocate the use of a combined multi-tier molecular analysis suite for the detection, differentiation and tracing of prohibited material in insect-PAP based feed chains and endorse ongoing efforts to extend the currently available battery of PAP detection approaches with MS based techniques and possibly δ13CAA fingerprinting.</p

    Future feed control – Tracing banned bovine material in insect meal

    Get PDF
    In the present study, we assessed if different legacy and novel molecular analyses approaches can detect and trace prohibited bovine material in insects reared to produce processed animal protein (PAP). Newly hatched black soldier fly (BSF) larvae were fed one of the four diets for seven days; a control feeding medium (Ctl), control feed spiked with bovine hemoglobin powder (BvHb) at 1% (wet weight, w/w) (BvHb 1%, w/w), 5% (BvHb 5%, w/w) and 10% (BvHb 10%, w/w). Another dietary group of BSF larvae, namely *BvHb 10%, was first grown on BvHb 10% (w/w), and after seven days separated from the residual material and placed in another container with control diet for seven additional days. Presence of ruminant material in insect feed and in BSF larvae was assessed in five different laboratories using (i) real time-PCR analysis, (ii) multi-target ultra-high performance liquid chromatography coupled to tandem mass spectrometry (UHPLC-MS/MS), (iii) protein-centric immunoaffinity-LC-MS/MS, (iv) peptide-centric immunoaffinity-LC-MS/MS, (v) tandem mass spectral library matching (SLM), and (vi) compound specific amino acid analysis (CSIA). All methods investigated detected ruminant DNA or BvHb in specific insect feed media and in BSF larvae, respectively. However, each method assessed, displayed distinct shortcomings, which precluded detection of prohibited material versus non-prohibited ruminant material in some instances. Taken together, these findings indicate that detection of prohibited material in the insect-PAP feed chain requires a tiered combined use of complementary molecular analysis approaches. We therefore advocate the use of a combined multi-tier molecular analysis suite for the detection, differentiation and tracing of prohibited material in insect-PAP based feed chains and endorse ongoing efforts to extend the currently available battery of PAP detection approaches with MS based techniques and possibly δ13CAA fingerprinting.publishedVersio

    Psychosocial and treatment correlates of opiate free success in a clinical review of a naltrexone implant program

    Get PDF
    Background: There is on-going controversy in relation to the efficacy of naltrexone used for the treatment of heroin addiction, and the important covariates of that success. We were also interested to review our experience with two depot forms of implantable naltrexone. Methods: A retrospective review of patients' charts was undertaken, patients were recalled by telephone and by letter, and urine drug screen samples were collected. Opiate free success (OFS) was the parameter of interest. Three groups were defined. The first two were treated in the previous 12 months and comprised "implant" and "tablet" patients. A third group was "historical" comprising those treated orally in the preceding 12 months. Results: There were 102, 113 and 161 patients in each group respectively. Groups were matched for age, sex, and dose of heroin used, but not financial status or social support. The overall follow-up rate was 82%. The Kaplan Meier 12 month OFS were 82%, 58% and 52% respectively. 12 post-treatment variables were independently associated with treatment retention. In a Cox proportional hazard multivariate model social support, the number of detoxification episodes, post-treatment employment, the use of multiple implant episodes and spiritual belief were significantly related to OFS. Conclusion: Consistent with the voluminous international literature clinically useful retention rates can be achieved with naltrexone, which may be improved by implants and particularly serial implants, repeat detoxification, meticulous clinical follow-up, and social support. As depot formulations of naltrexone become increasingly available such results can guide their clinical deployment, improve treatment outcomes, and enlarge the policy options for an exciting non-addictive pharmacotherapy for opiate addiction

    Low-complexity regions within protein sequences have position-dependent roles

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Regions of protein sequences with biased amino acid composition (so-called Low-Complexity Regions (LCRs)) are abundant in the protein universe. A number of studies have revealed that i) these regions show significant divergence across protein families; ii) the genetic mechanisms from which they arise lends them remarkable degrees of compositional plasticity. They have therefore proved difficult to compare using conventional sequence analysis techniques, and functions remain to be elucidated for most of them. Here we undertake a systematic investigation of LCRs in order to explore their possible functional significance, placed in the particular context of Protein-Protein Interaction (PPI) networks and Gene Ontology (GO)-term analysis.</p> <p>Results</p> <p>In keeping with previous results, we found that LCR-containing proteins tend to have more binding partners across different PPI networks than proteins that have no LCRs. More specifically, our study suggests i) that LCRs are preferentially positioned towards the protein sequence extremities and, in contrast with centrally-located LCRs, such terminal LCRs show a correlation between their lengths and degrees of connectivity, and ii) that centrally-located LCRs are enriched with transcription-related GO terms, while terminal LCRs are enriched with translation and stress response-related terms.</p> <p>Conclusions</p> <p>Our results suggest not only that LCRs may be involved in flexible binding associated with specific functions, but also that their positions within a sequence may be important in determining both their binding properties and their biological roles.</p
    corecore