566 research outputs found
Transport in the metallic regime of Mn doped III-V Semiconductors
The standard model of Mn doping in GaAs is subjected to a coherent potential
approximation (CPA) treatment. Transport coefficients are evaluated within the
linear response Kubo formalism. Both normal (NHE) and anomalous contributions
(AHE) to the Hall effect are examined. We use a simple model density of states
to describe the undoped valence band. The CPA bandstructure evolves into a spin
split band caused by the exchange scattering with Mn dopants. This gives
rise to a strong magnetoresistance, which decreases sharply with temperature.
The temperature () dependence of the resistance is due to spin disorder
scattering (increasing with ), CPA bandstructure renormalization and charged
impurity scattering (decreasing with ). The calculated transport
coefficients are discussed in relation to experiment, with a view of assessing
the overall trends and deciding whether the model describes the right physics.
This does indeed appear to be case, bearing in mind that the hopping limit
needs to be treated separately, as it cannot be described within the band CPA.Comment: submitted to Phys. Rev.
Hand2 elevates cardiomyocyte production during zebrafish heart development and regeneration
Embryonic heart formation requires the production of an appropriate number of cardiomyocytes; likewise, cardiac regeneration following injury relies upon the recovery of lost cardiomyocytes. The basic helix-loop-helix (bHLH) transcription factor Hand2 has been implicated in promoting cardiomyocyte formation. It is unclear, however, whether Hand2 plays an instructive or permissive role during this process. Here, we find that overexpression of hand2 in the early zebrafish embryo is able to enhance cardiomyocyte production, resulting in an enlarged heart with a striking increase in the size of the outflow tract. Our evidence indicates that these increases are dependent on the interactions of Hand2 in multimeric complexes and are independent of direct DNA binding by Hand2. Proliferation assays reveal that hand2 can impact cardiomyocyte production by promoting division of late-differentiating cardiac progenitors within the second heart field. Additionally, our data suggest that hand2 can influence cardiomyocyte production by altering the patterning of the anterior lateral plate mesoderm, potentially favoring formation of the first heart field at the expense of hematopoietic and vascular lineages. The potency of hand2 during embryonic cardiogenesis suggested that hand2 could also impact cardiac regeneration in adult zebrafish; indeed, we find that overexpression of hand2 can augment the regenerative proliferation of cardiomyocytes in response to injury. Together, our studies demonstrate that hand2 can drive cardiomyocyte production in multiple contexts and through multiple mechanisms. These results contribute to our understanding of the potential origins of congenital heart disease and inform future strategies in regenerative medicine
Structure, magnetic and transport properties of Ti-substituted La0.7Sr0.3MnO3
Ti-substituted perovskites, La0.7Sr0.3Mn1-xTixO3, with x between 0 to 0.20,
were investigated by neutron diffraction, magnetization, electric resistivity,
and magnetoresistance (MR) measurements. All samples show a rhombohedral
structure (space group R3c) from 10 K to room temperature. At room temperature,
the cell parameters a, c and the unit cell volume increase with increasing Ti
content. However, at 10 K, the cell parameter a has a maximum value for x =
0.10, and decreases for x greater than 0.10, while the unit cell volume remains
nearly constant for x greater than 0.10. The average (Mn,Ti)-O bond length
increases up to x=0.15, and the (Mn,Ti)-O-(Mn,Ti) bond angle decreases with
increasing Ti content to its minimum value at x=0.15 at room temperature. Below
the Curie temperature T_C, the resistance exhibits metallic behavior for the x
_ 0.05 samples. A metal (semiconductor) to insulator transition is observed for
the x_ 0.10 samples. A peak in resistivity appears below T_C for all samples,
and shifts to a lower temperature as x increases. The substitution of Mn by Ti
decreases the 2p-3d hybridization between O and Mn ions, reduces the bandwidth
W, and increases the electron-phonon coupling. Therefore, the TC shifts to a
lower temperature and the resistivity increases with increasing Ti content. A
field-induced shift of the resistivity maximum occurs at x less than or equal
to 0.10. The maximum MR effect is about 70% for La0.7Sr0.3Mn0.8Ti0.2O3. The
separation of TC and the resistivity maximum temperature Tmax enhances the MR
effect in these compounds due to the weak coupling between the magnetic
ordering and the resistivity as compared with La0.7Sr0.3MnO3.Comment: zip fil
Tuning the spin Hamiltonian of NENP by external pressure: a neutron scattering study
We report an inelastic neutron scattering study of antiferromagnetic spin
dynamics in the Haldane chain compound Ni(C2H8N2)2NO2ClO4 (NENP) under external
hydrostatic pressure P = 2.5 GPa. At ambient pressure, the magnetic excitations
in NENP are dominated by a long-lived triplet mode with a gap which is split by
orthorhombic crystalline anisotropy into a lower doublet centered at
1.2meV and a singlet at 2.5meV.
With pressure we observe appreciable shifts in these levels, which move to
1.45 meV and
2.2meV. The dispersion of these modes in the crystalline c-direction
perpendicular to the chain was measured here for the first time, and can be
accounted for by an interchain exchange J'_c approximately 3e-4*J which changes
only slightly with pressure. Since the average gap value 1.64
meV remains almost unchanged with P, we conclude that in NENP the application
of external pressure does not affect the intrachain coupling J appreciably, but
does produce a significant decrease of the single-ion anisotropy constant from
D/J = 0.16(2) at ambient pressure to D/J = 0.09(7) at P = 2.5 GPa.Comment: LaTeX file nenp_p.tex, 10 pages, 1 table, 5 figures. Submitted to
Phys. Rev.
Large Orbital Magnetic Moment and Coulomb Correlation effects in FeBr2
We have performed an all-electron fully relativistic density functional
calculation to study the magnetic properties of FeBr2. We show for the first
time that the correlation effect enhances the contribution from orbital degrees
of freedom of electrons to the total magnetic moment on Fe as
opposed to common notion of nearly total quenching of the orbital moment on
Fe site. The insulating nature of the system is correctly predicted when
the Hubbard parameter U is included. Energy bands around the gap are very
narrow in width and originate from the localized Fe-3 orbitals, which
indicates that FeBr2 is a typical example of the Mott insulator.Comment: 4 pages, 3 figures, revtex4, PRB accepte
Second Low Temperature Phase Transition in Frustrated UNi_4B
Hexagonal UNi_4B is magnetically frustrated, yet it orders
antiferromagnetically at T_N = 20 K. However, one third of the U-spins remain
paramagnetic below this temperature. In order to track these spins to lower
temperature, we measured the specific heat C of \unib between 100 mK and 2 K,
and in applied fields up to 9 T. For zero field there is a sharp kink in C at
330 mK, which we interpret as an indication of a second phase
transition involving paramagnetic U. The rise in between 7 K and
330 mK and the absence of a large entropy liberated at may be due to a
combination of Kondo screening effects and frustration that strongly modifies
the low T transition.Comment: 4 pages, 4 figure
Magneto-caloric effect in the pseudo-binary intermetallic YPrFe17 compound
We have synthesized the intermetallic YPrFe17 compound by arc-melting. X-ray
and neutron powder diffraction show that the crystal structure is rhombohedral
with View the MathML source space group (Th2Zn17-type). The investigated
compound exhibits a broad isothermal magnetic entropy change {\Delta}SM(T)
associated with the ferro-to-paramagnetic phase transition (TC \approx 290 K).
The |{\Delta}SM| (\approx 2.3 J kg-1 K-1) and the relative cooling power
(\approx 100 J kg-1) have been calculated for applied magnetic field changes up
to 1.5 T. A single master curve for {\Delta}SM under different values of the
magnetic field change can be obtained by a rescaling of the temperature axis.
The results are compared and discussed in terms of the magneto-caloric effect
in the isostructural R2Fe17 (R = Y, Pr and Nd) binary intermetallic alloys.Comment: Preprint, 5 pages (postprint), 4 figures, regular pape
Crystal and Magnetic Structures of LaNi5−xMnx
The crystallographic and magnetic properties of LaNi5−xMnx with x=1, 1.5, and 2, have been investigated using x-ray and neutron diffraction, vibrating sample magnetometer and superconducting quantum interference device measurements. All the samples crystallize in the hexagonal CaCu5-type (P6/mmm) structure. Manganese atoms preferentially occupy the 3g site in the LaNi5 structure. The bulk magnetization of the LaNi5−xMnx powder samples decreases rapidly as nickel is replaced by manganese. A ferrimagnetic model is applied to describe the magnetic structure of the LaNi5−xMnx samples for x=1.5 and 2. A ferromagnetic model gives the best fit of the neutron diffraction data for the LaNi4Mn sample
Specific heat and magnetization study on single crystals of a frustrated, quasi one-dimensional oxide: Ca3Co2O6
Specific heat and magnetization measurements have been carried out under a
range of magnetic fields on single crystals of Ca3Co2O6. This compound is
composed of Ising magnetic chains that are arranged on a triangular lattice.
The intrachain and interchain couplings are ferromagnetic and
antiferromagnetic, respectively. This situation gives rise to geometrical
frustration, that bears some similarity to the classical problem of a
two-dimensional Ising triangular antiferromagnet. This paper reports on the
ordering process at low-T and the possibility of one-dimensional features at
high-T.Comment: 7 pages, 6 figures, accepted for publication in PR
Exchange bias effect in alloys and compounds
The phenomenology of exchange bias effects observed in structurally
single-phase alloys and compounds but composed of a variety of coexisting
magnetic phases such as ferromagnetic, antiferromagnetic, ferrimagnetic,
spin-glass, cluster-glass and disordered magnetic states are reviewed. The
investigations on exchange bias effects are discussed in diverse types of
alloys and compounds where qualitative and quantitative aspects of magnetism
are focused based on macroscopic experimental tools such as magnetization and
magnetoresistance measurements. Here, we focus on improvement of fundamental
issues of the exchange bias effects rather than on their technological
importance
- …
