2,910 research outputs found
Simon-Task Reveals Balanced Visuomotor Control in Experienced Video-Game Players
Both short and long-term video-game play may result in superior performance on visual and attentional tasks. To further these findings, we compared the performance of experienced male video-game players (VGPs) and non-VGPs on a Simon-task. Experienced-VGPs began playing before the age of 10, had a minimum of 8 years of experience and a minimum play time of over 20 h per week over the past 6 months. Our results reveal a significantly reduced Simon-effect in experienced-VGPs relative to non-VGPs. However, this was true only for the right-responses, which typically show a greater Simon-effect than left-responses. In addition, experienced-VGPs demonstrated significantly quicker reaction times and more balanced left-versus-right-hand performance than non-VGPs. Our results suggest that experienced-VGPs can resolve response-selection conflicts more rapidly for right-responses than non-VGPs, and this may in part be underpinned by improved bimanual motor control
Recommended from our members
Tumor necrosis factor-alpha regulates the expression of inducible costimulator receptor ligand on CD34+ progenitor cells during differentiation into antigen presenting cells
The inducible costimulator receptor (ICOS) is a third member of the CD28 receptor family that regulates T cell activation and function. ICOS binds to a newly identified ligand on antigen presenting cells different from the CD152 ligands CD80 and CD86. We used soluble ICOSIg and a newly developed murine anti-human ICOS ligand (ICOSL) monoclonal antibody to further characterize the ICOSL during ontogeny of antigen presenting cells. In a previous study, we found that ICOSL is expressed on monocytes, dendritic cells, and B cells. To define when ICOSL is first expressed on myeloid antigen presenting cells, we examined ICOSL expression on CD34 cells in bone marrow. We found that CD34bright cells regardless of their myeloid commitment were ICOSL , whereas ICOSL was first expressed when CD34 expression diminished and the myeloid marker CD33 appeared
Rubber friction: role of the flash temperature
When a rubber block is sliding on a hard rough substrate, the substrate
asperities will exert time-dependent deformations of the rubber surface
resulting in viscoelastic energy dissipation in the rubber, which gives a
contribution to the sliding friction. Most surfaces of solids have roughness on
many different length scales, and when calculating the friction force it is
necessary to include the viscoelastic deformations on all length scales. The
energy dissipation will result in local heating of the rubber. Since the
viscoelastic properties of rubber-like materials are extremely strongly
temperature dependent, it is necessary to include the local temperature
increase in the analysis. At very low sliding velocity the temperature increase
is negligible because of heat diffusion, but already for velocities of order
0.01 m/s the local heating may be very important. Here I study the influence of
the local heating on the rubber friction, and I show that in a typical case the
temperature increase results in a decrease in rubber friction with increasing
sliding velocity for v > 0.01 m/s. This may result in stick-slip instabilities,
and is of crucial importance in many practical applications, e.g., for the
tire-road friction, and in particular for ABS-breaking systems.Comment: 22 pages, 27 figure
Recommended from our members
Leveraging private investment to expand renewable power generation: Evidence on financial additionality and productivity gains from Uganda
Effectively mitigating climate change entails a quick upscaling and redirection of electricity infrastructure investment. Given that the bulk of greenhouse gas emissions increases until 2050 will come from low- and middle-income countries, finding cost-effective ways to mitigate climate change while meeting development targets is essential. However, recent research has shown some of the limitations of broad financing mechanisms, such as the Clean Development Mechanism (CDM) and existing carbon markets. This has resulted in a growing interest in designing novel investment support schemes, such as modifications of targeted feed-in-tariffs (FiTs) that may be more cost effective and better targeted towards particular outcomes when compared to traditional deployment subsidies or broad financing mechanisms. We evaluate the design and outcomes of one such novel support schemes: the GET FiT (Global Energy Transfer Feed-in Tariff) investment support scheme in Uganda, which has attracted ~ 453 million USD in private sector investment for 17 small-scale renewable energy projects (solar, hydro, bagasse) in only three years. Using financial modelling on detailed project-level data, we find that the majority of projects were additional and would therefore not have been built without the subsidy. In addition, using firm-level panel data, we show that power outages hamper manufacturing performance in Uganda. In the absence of reliable outage-data for the entire Ugandan territory, we use nightlight variations to proxy changes in outages. We show that outages have declined substantially since the introduction of GET FiT. Yet, our analysis also demonstrates that programmes to incentivise additional renewable generation in developing countries funded internationally or domestically should liaise closely with grid authorities to ensure that supply does not outstrip demand.European Union’s Horizon 2020 INNOPATHS project (Grant agreement no. 730403)
The Department of Land Economy and the School of Humanities and Social Sciences, University of Cambridge
Heinrich Böll Foundation
Permafrost - physical aspects and carbon cycling, databases and uncertainties
Permafrost is defined as ground that remains below 0°C for at least 2 consecutive years. About 24% of the northern hemisphere land area is underlain by permafrost. The thawing of permafrost has the potential to influence the climate system through the release of carbon (C) from northern high latitude terrestrial ecosystems, but there is substantial uncertainty about the sensitivity of the C cycle to thawing permafrost. Soil C can be mobilized from permafrost in response to changes in air temperature, directional changes in water balance, fire, thermokarst, and flooding. Observation networks need to be implemented to understand responses of
permafrost and C at a range of temporal and spatial scales. The understanding gained from these observation networks needs to be integrated into modeling frameworks capable of representing how the responses of permafrost C will influence the trajectory of climate in the future
Efficient wide-field radio interferometry response
Radio interferometers do not measure the sky brightness distribution directly
but rather a modified Fourier transform of it. Imaging algorithms, thus, need a
computational representation of the linear measurement operator and its
adjoint, irrespective of the specific chosen imaging algorithm. In this paper,
we present a C++ implementation of the radio interferometric measurement
operator for wide-field measurements which is based on "improved -stacking".
It can provide high accuracy (down to ), is based on a new
gridding kernel which allows smaller kernel support for given accuracy,
dynamically chooses kernel, kernel support and oversampling factor for maximum
performance, uses piece-wise polynomial approximation for cheap evaluations of
the gridding kernel, treats the visibilities in cache-friendly order, uses
explicit vectorisation if available and comes with a parallelisation scheme
which scales well also in the adjoint direction (which is a problem for many
previous implementations). The implementation has a small memory footprint in
the sense that temporary internal data structures are much smaller than the
respective input and output data, allowing in-memory processing of data sets
which needed to be read from disk or distributed across several compute nodes
before.Comment: 13 pages, 8 figure
Gene Deletion of the Kinin Receptor B1 Attenuates Cardiac Inflammation and Fibrosis During the Development of Experimental Diabetic Cardiomyopathy
Objective: Diabetic cardiomyopathy is associated with increased mortality in patients with diabetes mellitus. The underlying pathology of this disease is still under discussion. We studied the role of the kinin B1 receptor on the development of experimental diabetic cardiomyopathy. Research Design and Methods: We utilized B1 receptor knockout mice and investiged cardiac inflammation, fibrosis and oxidative stress after induction of streptozotocin (STZ)-induced diabetes mellitus. Furthermore, the left ventricular function was measured by pressure-volume loops after 8 weeks of diabetes mellitus. Results: B1 receptor knockout mice showed an attenuation of diabetic cardiomyopathy with improved systolic and diastolic function in comparison with diabetic control mice. This was associated with a decreased activation state of the MAP kinase p38, less oxidative stress as well as normalized cardiac inflammation, shown by fewer invading cells and, no increase in matrix metalloproteinase-9 as well as the chemokine CXCL-5. Furthermore, the pro-fibrotic connective tissue growth factor was normalized, leading to a reduction in cardiac fibrosis despite severe hyperglycemia in mice lacking the B1 receptor. Conclusion: These findings suggest that the B1 receptor is detrimental in diabetic cardiomyopathy in that it mediates inflammatory and fibrotic processes. These insights might have useful implications on future studies utilizing B1 receptor antagonists for treatment of human diabetic cardiomyopathy
- …