223 research outputs found

    Structure of a Force-Conveying Cadherin Bond Essential for Inner-Ear Mechanotransduction

    Get PDF
    Hearing and balance use hair cells in the inner ear to transform mechanical stimuli into electrical signals. Mechanical force from sound waves or head movements is conveyed to hair-cell transduction channels by tip links, fine filaments formed by two atypical cadherins known as protocadherin 15 and cadherin 23. These two proteins are involved in inherited deafness and feature long extracellular domains that interact tip-to-tip in a Ca2+Ca^{2+}-dependent manner. However, the molecular architecture of this complex is unknown. Here we combine crystallography, molecular dynamics simulations and binding experiments to characterize the protocadherin 15-cadherin 23 bond. We find a unique cadherin interaction mechanism, in which the two most amino-terminal cadherin repeats (extracellular cadherin repeats 1 and 2) of each protein interact to form an overlapped, antiparallel heterodimer. Simulations predict that this tip-link bond is mechanically strong enough to resist forces in hair cells. In addition, the complex is shown to become unstable in response to Ca2+Ca^{2+} removal owing to increased flexure of Ca2+Ca^{2+}-free cadherin repeats. Finally, we use structures and biochemical measurements to study the molecular mechanisms by which deafness mutations disrupt tip-link function. Overall, our results shed light on the molecular mechanics of hair-cell sensory transduction and on new interaction mechanisms for cadherins, a large protein family implicated in tissue and organ morphogenesis, neural connectivity and cancer.Molecular and Cellular Biolog

    Signal peptide peptidases and gamma-secretase: Cousins of the same protease family?

    Get PDF
    Signal peptide peptidase (SPIP) is an unusual aspartyl protease, which mediates clearance of signal peptides by proteolysis within the endoplasmic reticulum (ER). Like presenilins, which provide the proteolytically active subunit of the,gamma-secretase complex, SPP contains a conserved GxGD motif in its C-terminal domain which is critical for its activity. While SPIP is known to be an aspartyl protease of the GxGD type, several presenilin homologues/SPP-like proteins (PSHs/ SPPL) of unknown function have been identified by database searches. In contrast to SPP and SPPL3, which are both restricted to the endoplasmic reticulum, SPPL2b is targeted through the secretory pathway to endosomes/lysosomes. As suggested by the differential subcellular localization of SPPL2b and SPPL3 distinct phenotypes were found upon antisense gripNA-mediated knockdown in zebrafish. spp and sppl3 knockdowns in zebrafish result in cell death within the central nervous system, whereas reduction of sppl2b expression causes erythrocyte accumulation in an enlarged caudal vein. Moreover, expression of D/A mutants of the putative C-terminal active sites of spp, sppl2, and spp13 produced phenocopies of the respective knockdown phenotypes. These data suggest that all investigated PSHs/SPPLs are members of the novel family of GxGD aspartyl proteases. More recently, it was shown that SPPL2b utilizes multiple intramembrane cleavages to liberate the TNF(x intracellular domain into the cytosol and to release the C-terminal counterpart into the lumen. These findings suggest common principles of intramembrane proteolysis by GxGD type aspartyl proteases. In this article,we will review the similarities of SPPs and gamma-secretase based on recent findings by us and others

    Streptococcus pyogenes pSM19035 requires dynamic assembly of ATP-bound ParA and ParB on parS DNA during plasmid segregation

    Get PDF
    The accurate partitioning of Firmicute plasmid pSM19035 at cell division depends on ATP binding and hydrolysis by homodimeric ATPase δ2 (ParA) and binding of ω2 (ParB) to its cognate parS DNA. The 1.83 Å resolution crystal structure of δ2 in a complex with non-hydrolyzable ATPγS reveals a unique ParA dimer assembly that permits nucleotide exchange without requiring dissociation into monomers. In vitro, δ2 had minimal ATPase activity in the absence of ω2 and parS DNA. However, stoichiometric amounts of ω2 and parS DNA stimulated the δ2 ATPase activity and mediated plasmid pairing, whereas at high (4:1) ω2 : δ2 ratios, stimulation of the ATPase activity was reduced and δ2 polymerized onto DNA. Stimulation of the δ2 ATPase activity and its polymerization on DNA required ability of ω2 to bind parS DNA and its N-terminus. In vivo experiments showed that δ2 alone associated with the nucleoid, and in the presence of ω2 and parS DNA, δ2 oscillated between the nucleoid and the cell poles and formed spiral-like structures. Our studies indicate that the molar ω2 : δ2 ratio regulates the polymerization properties of (δ•ATP•Mg2+)2 on and depolymerization from parS DNA, thereby controlling the temporal and spatial segregation of pSM19035 before cell division

    Quasi-free Compton Scattering and the Polarizabilities of the Neutron

    Full text link
    Differential cross sections for quasi-free Compton scattering from the proton and neutron bound in the deuteron have been measured using the Glasgow/Mainz tagging spectrometer at the Mainz MAMI accelerator together with the Mainz 48 cm \oslash ×\times 64 cm NaI(Tl) photon detector and the G\"ottingen SENECA recoil detector. The data cover photon energies ranging from 200 MeV to 400 MeV at θγLAB=136.2\theta^{LAB}_\gamma=136.2^\circ. Liquid deuterium and hydrogen targets allowed direct comparison of free and quasi-free scattering from the proton. The neutron detection efficiency of the SENECA detector was measured via the reaction p(γ,π+n)p(\gamma,\pi^+ n). The "free" proton Compton scattering cross sections extracted from the bound proton data are in reasonable agreement with those for the free proton which gives confidence in the method to extract the differential cross section for free scattering from quasi-free data. Differential cross sections on the free neutron have been extracted and the difference of the electromagnetic polarizabilities of the neutron have been obtained to be αβ=9.8±3.6(stat)12.1.1(syst)±2.2(model)\alpha-\beta= 9.8\pm 3.6(stat){}^{2.1}_1.1(syst)\pm 2.2(model) in units 104fm310^{-4}fm^3. In combination with the polarizability sum α+β=15.2±0.5\alpha +\beta=15.2\pm 0.5 deduced from photoabsorption data, the neutron electric and magnetic polarizabilities, αn=12.5±1.8(stat)0.6+1.1±1.1(model)\alpha_n=12.5\pm 1.8(stat){}^{+1.1}_{-0.6}\pm 1.1(model) and βn=2.71.8(stat)1.1+0.6(syst)1.1(model)\beta_n=2.7\mp 1.8(stat){}^{+0.6}_{-1.1}(syst)\mp 1.1(model) are obtained. The backward spin polarizability of the neutron was determined to be γπ(n)=(58.6±4.0)×104fm4\gamma^{(n)}_\pi=(58.6\pm 4.0)\times 10^{-4}fm^4

    Structural determinants of PINK1 topology and dual subcellular distribution

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>PINK1 is a mitochondria-targeted kinase that constitutively localizes to both the mitochondria and the cytosol. The mechanism of how PINK1 achieves cytosolic localization following mitochondrial processing remains unknown. Understanding PINK1 subcellular localization will give us insights into PINK1 functions and how mutations in PINK1 lead to Parkinson's disease. We asked how the mitochondrial localization signal, the transmembrane domain, and the kinase domain participate in PINK1 localization.</p> <p>Results</p> <p>We confirmed that PINK1 mitochondrial targeting signal is responsible for mitochondrial localization. Once inside the mitochondria, we found that both PINK1 transmembrane and kinase domain are important for membrane tethering and cytosolic-facing topology. We also showed that PINK1 dual subcellular distribution requires both Hsp90 interaction with the kinase domain and the proteolysis at a cleavage site downstream of the transmembrane domain because removal of this cleavage site completely abolished cytosolic PINK1. In addition, the disruption of the Hsp90-PINK1 interaction increased mitochondrial PINK1 level.</p> <p>Conclusion</p> <p>Together, we believe that once PINK1 enters the mitochondria, PINK1 adopts a tethered topology because the transmembrane domain and the kinase domain prevent PINK1 forward movement into the mitochondria. Subsequent proteolysis downstream of the transmembrane domain then releases PINK1 for retrograde movement while PINK1 kinase domain interacts with Hsp90 chaperone. The significance of this dual localization could mean that PINK1 has compartmental-specific functions.</p

    Quasi-free π0\pi^0 Photoproduction from the Bound Nucleon

    Full text link
    Differential cross-sections for quasi-free π0\pi^0 photoproduction from the proton and neutron bound in the deuteron have been measured for Eγ=200400E_\gamma= 200 - 400 MeV at θγlab=136.2\theta^{\rm lab}_\gamma = 136.2^\circ usind the Glasgow photon tagger at MAMI, the Mainz 48 cm \varnothing ×\times 64 cm NaI(Tl) photon detector and the G\"ottingen SENECA recoil detector. For the proton measurements made with both liquid deuterium and liquid hydrogen targets allow direct comparison of "free" π0\pi^0 photoproduction cross-sections as extracted from the bound proton data with experimental free cross sections which are found to be in reasonable agreement below 320 MeV. At higher energies the "free" cross sections extracted from quasifree data are significantly smaller than the experimental free cross sections and theoretical predictions based on multipole analysis. For the first time, "free" neutron cross sections have been extracted in the Δ\Delta-region. They are also in agreement with the predictions from multipole analysis up to 320 MeV and significantly smaller at higher photon energies

    Neutron polarizabilities investigated by quasi-free Compton scattering from the deuteron

    Full text link
    Measuring Compton scattered photons and recoil neutrons in coincidence, quasi-free Compton scattering by the neutron has been investigated at MAMI (Mainz) at thetaγlab=136otheta^{lab}_\gamma=136^o in an energy range from 200 to 400 MeV. From the data a polarizability difference of αnβn=9.8±3.6(stat)1.1+2.1(syst)±2.2(model)\alpha_n - \beta_n = 9.8 \pm 3.6(stat)^{+2.1}_{-1.1}(syst)\pm 2.2(model) in units of 104fm310^{-4}fm^3 has been determined. In combination with the polarizability sum αn+βn=15.2±0.5\alpha_n+\beta_n= 15.2\pm 0.5 deduced from photo absorption data, the neutron electric and magnetic polarizabilities, αn=12.5±1.8(stat)0.6+1.1(syst)±1.1(model)\alpha_n=12.5\pm 1.8(stat)^{+1.1}_{-0.6}(syst)\pm 1.1(model) and βn=2.71.8(stat)1.1+0.6(syst)1.1(model)\beta_n = 2.7\mp 1.8(stat)^{+0.6}_{-1.1}(syst)\mp 1.1(model), are obtained

    The helicity amplitudes A1/2_{1/2} and A3/2_{3/2} for the D13(1520)_{13}(1520) resonance obtained from the γppπ0\vec{\gamma} \vec{p} \to p \pi^0 reaction}

    Full text link
    The helicity dependence of the γppπ0\vec{\gamma} \vec{p} \to p \pi^0 reaction has been measured for the first time in the photon energy range from 550 to 790 MeV. The experiment, performed at the Mainz microtron MAMI, used a 4π\pi-detector system, a circularly polarized, tagged photon beam, and a longitudinally polarized frozen-spin target. These data are predominantly sensitive to the D13(1520)D_{13}(1520) resonance and are used to determine its parameters.Comment: 5 pages, 4 figure

    First measurement of the Gerasimov-Drell-Hearn integral for Hydrogen from 200 to 800 MeV

    Full text link
    A direct measurement of the helicity dependence of the total photoabsorption cross section on the proton was carried out at MAMI (Mainz) in the energy range 200 < E_gamma < 800 MeV. The experiment used a 4π\pi detection system, a circularly polarized tagged photon beam and a frozen spin target. The contributions to the Gerasimov-Drell-Hearn sum rule and to the forward spin polarizability γ0\gamma_0 determined from the data are 226 \pm 5 (stat)\pm 12(sys) \mu b and -187 \pm 8 (stat)\pm 10(sys)10^{-6} fm^4, respectively, for 200 < E_\gamma < 800 MeV.Comment: 6 pages, 3 figures, 3 table
    corecore