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Hearing and balance use hair cells in the inner ear to transform mechanical stimuli
into electrical signals’. Mechanical force from sound waves or head movements is
conveyed to hair-cell transduction channels by tip links®, fine filaments formed by
two atypical cadherins: protocadherin-15 and cadherin-23*°. These two proteins are

6-10

products of deafness genes” ™ and feature long extracellular domains that interact

> in a Ca?*-dependent manner. However, the molecular architecture of

tip-to-tip
the complex is unknown. Here we combine crystallography, molecular dynamics
simulations, and binding experiments to characterize the cadherin-23 and
protocadherin-15 bond. We find a unique cadherin interaction mechanism, with the
two most N-terminal cadherin repeats (EC1+2) of each protein interacting to form
an overlapped, antiparallel heterodimer. Simulations predict that this tip-link bond
is mechanically strong enough to resist forces in hair cells. In addition, the complex
becomes unstable upon Ca** removal due to increased flexure of Ca?*-free cadherin
repeats. Finally, we use structures and biochemical measurements to understand
molecular mechanisms by which deafness mutations disrupt tip-link function.
Overall, our results shed light on the molecular mechanics of hair-cell sensory
transduction and on new interaction mechanisms for cadherins, a large protein

12,13

family implicated in tissue and organ morphogenesis'?*3, neural connectivity™*, and

cancer®.



Hair cell mechanotransduction happens within each bundle of stereocilia (Fig. 1a), which
is deflected by mechanical stimulation®. Deflection results in tension applied to tip links,
protein filaments linking the tip of each stereocilium to its tallest neighbour®®. The tip
links, acting in series with an elastic “gating spring,” pull open transduction channels.
Recently, protocadherin-15 and cadherin-23, which feature exceptionally long
extracellular domains with 11 and 27 extracellular cadherin (EC) repeats (Fig. 1b), were
shown to form the tip link**. To elucidate the tip-link heterophilic molecular bond
between protocadherin-15 and cadherin-23, we determined the crystallographic structure
of their interacting N-termini (Fig. 1c; results summary in Supplementary Fig. 1). Size
exclusion chromatography (SEC) of co-refolded protein fragments comprising the EC1+2
repeats of protocadherin-15 and EC1+2 of cadherin-23 (referred to here as pcdh-15 and
cdh-23, respectively) showed a monodisperse peak with the two protein fragments
interacting in solution (Supplementary Fig. 2a). The complex crystallized in two packing
arrangements and two independent models were fully refined (Sla-S1b and S2,

respectively; Supplementary Table 1 and Supplementary Fig. 3).

The structures show that pcdh-15 and cdh-23 form an overlapping and antiparallel
heterodimer (pcdh-15+cdh-23; Figs 1c, f and g). The interaction resembles an “extended
handshake” and involves repeats EC1 and EC2 from both proteins. The overall fold of
pcdh-15 and cdh-23 matched the well-known Greek-key motif of classical cadherins
(Supplementary Fig. 4). As expected, three Ca®* ions are found in a canonical
arrangement (sites 1, 2, and 3) at the linker region between repeats EC1 and EC2 of each
protein (Fig. 1c,e). However, several novel structural features within pcdh-15 and cdh-23

enable the handshake interaction.

Pcdh-15 has an elongated N-terminus clamped by an intramolecular disulfide bond (Fig.
1d), which is followed by a conserved RXGPP motif that forms a rigid and bulky loop
(Supplementary Fig. 5a&b). This RXGPP loop, within strand A of protocadherin-15
EC1, is tucked against the narrow wrist of the adjacent cdh-23’s linker region (Fig. 1c).
Similarly, cdh-23 has an elongated N-terminus, stabilized at the tip by Ca?*-binding site

0! which is followed by a bulky 310 helix within strand A that sits at the narrow wrist



of the adjacent pcdh-15’s linker (Fig. 1c). Thus, the pcdh-15+cdh-23 interface exploits
unique structural protrusions within strand A of each EC1 repeat, which in turn are
stabilized by a disulfide bond and a Ca®*-binding site and lead to two main areas of

interaction described below.

The pcdh-15+cdh-23 heterophilic interface differs from the strand-exchanged or X-dimer
homophilic interfaces of classical cadherins*®?. Furthermore, this interface is not directly
mediated by Ca* as previously speculated*®!’. However, several factors indicate that this
is a robust interface. The buried surface area is ~1,000 A? per protomer (see
Supplementary Tables 1&2), similar to that of classical cadherin interfaces (850 A? and
1,270 A% for type | and type IlI, respectively). The interface is amphiphilic
(Supplementary Fig. 6); all its residues are highly conserved in mouse, human, and
chicken homologues and none are predicted to be glycosylated (Fig. 1g and
Supplementary Fig. 7). Finally, the same interface was observed in two different crystal

lattices, so it is unlikely to represent unphysiological crystal packing interactions.

To further validate the pcdh-15+cdh-23 interface we used isothermal titration calorimetry
(ITC) and site-directed mutagenesis. The stoichiometry of the wild-type complex was
determined to be N = 0.88 + 0.1, consistent with the one-to-one crystallographic
arrangement (Fig. 1). The measured dissociation constant was Kp = 2.9 + 0.4 uM (T =
10°C, AH = 7084 + 233 cal/mol, AS = 50.4 + 1.1 cal/mol/deg, two trials; Fig. 2a,b and
Supplementary Discussion). The tip link is thought to be a heterotetramer of parallel
protocadherin-15 and cadherin-23 dimers® (Fig. 1b). However, our biochemical and
crystallographic data do not show homophilic binding of cdh-23 or pcdh-15, suggesting
that parallel dimerization is mediated by repeats other than EC1+2. If so, the binding

affinity for the heterotetramer is expected to be significantly higher.

The “extended handshake” features two main areas of interaction. The first one is located
at and above pcdh-15’s RXGPP loop and centers on Y8, P19 and 1108 in pcdh-15, and
L145 and Q187 in cdh-23 (Figs 1g, 2d-f). The second, located between the RXGPP loop
and cdh-23’s 35 helix, involves 122, R113 and V115 in pcdh-15 along with Y16 and Q98



in cdh-23 (Figs. 1g &2d,g). To test the two interaction areas we introduced mutations
predicted to disrupt them: 122A in pcdh-15 (pcdh-15,224) and L145G in cdh-23 (cdh-
2311456, Fig. 2d,e,9). SEC confirmed proper folding and structural integrity of the mutant
proteins. ITC experiments, testing binding with either one or both mutant partners,
showed decreased affinity for each single-mutant complex (pcdh-15i2at+cdh-23, Kp >
100 uM; pcdh-15+cdh-23| 1456, Kp > 30 uM), and complete lack of interaction for the
double-mutant complex (pcdh-15,,a+cdh-23,1456; Fig. 2a,b,d,e,g and Supplementary
Figs 2, 8&9). Likewise, SEC of pcdh-15+cadherin-23 EC1 repeats alone did not show
complex formation (Supplementary Fig. 2b). Taken together, these results show that the

interface observed in the crystals is consistent with the interface observed in solution.

Does the interface have the properties expected for a tip-link bond? Tip links are
regularly subjected to (and must withstand) forces ranging from 10 to 100 pN, both in
vivo and in physiological experiments. While SEC and ITC experiments provide a
characterization of the bond in thermodynamic equilibrium, they do not probe its
response to mechanical force. To determine whether the pcdh-15+cdh-23 interface is
mechanically strong we used steered molecular dynamics (SMD) simulations (Methods
and Supplementary Table 3). Force was applied to the C-terminus of each protomer to
induce complex dissociation (Fig. 3a). In all SMD simulations of pcdh-15+cdh-23 with
Ca®*, unbinding was observed without unfolding of repeats. Partial rupture of the binding
interface at contacts formed by residues pcdh-15t10s — cdh-23| 145 and pcdh-15ggs — cdh-
23n96 Was followed by sliding of the 319 helix in strand A of cadherin-23 EC1 over the
pcdh-15 RXGPP loop, and simultaneous rupture of a salt bridge between pcdh-15g1:3 and
cdh-23g77 (Fig. 3b and Supplementary Discussion, Figs 10, 11, and Movies I&ll).
Simulations performed using different stretching speeds, initial conditions, and
thermodynamic ensembles revealed a similar scenario with at least one force peak of >

400 pN associated with complex unbinding (Fig. 3c,d and Supplementary Figs 10&11).

Unbinding forces followed the well-known dependence on stretching speed®, with less
force required when the stretch was slower. The slowest speed used in our simulations

matched the measured velocity of the basilar membrane induced by loud sound® as well



as speeds of mechanical stimulators used in ex-vivo electrophysiological experiments®*
(see Supplementary Discussion). In all our simulations the pcdh-15+cdh-23 interface was
stronger than that of the classical C-cadherin interface pulled under identical conditions
(Supplementary Fig. 12). Furthermore, the predicted force required to unbind parallel
complexes was almost double that required to unbind a single pcdh-15+cdh-23 complex
(Supplementary Figs 12b,c), which may correspond to the actual force that
heterotetrameric tip links can withstand in vivo before rupture due to large mechanical

stimuli, e.g., loud sound.

The integrity of tip links in hair cells is Ca?*-dependent’, yet Ca** does not directly
participate in the binding interface. We therefore determined whether the pcdh-15+cdh-
23 complex is disrupted by Ca®* removal using SEC experiments in the presence of
EGTA (Fig. 4a). The cdh-23 fragment by itself did not show changes in its elution
volume, while pcdh-15 in the presence of EGTA showed a shifted elution trace.
Importantly, the pcdh-15+cdh-23 complex was disrupted by addition of EGTA: its
elution trace did not match that in the presence of Ca**, but rather corresponded to the
summation of the individual components’ traces without the shift in elution volume that
indicates interaction. The complex used for crystallization is thus Ca’*-dependent at
equilibrium, in line with what is known about the full-length protocadherin-15 and
cadherin-23 proteins and the tip link®°. To understand the basis of the Ca®* dependence,
we performed microsecond-long MD simulations of the Ca*'-free complex. These
suggest a molecular mechanism: removal of Ca?* is predicted to cause dissociation
indirectly, through entropic stress (see Supplementary Discussion, Supplementary Figs
13 & 14, and Movies I11, IV & V), as observed for other cadherins®.

Over 40 missense mutations associated with deafness in humans or mice target the
extracellular domains of protocadherin-15 and cadherin-23. Most modify Ca**-binding
residues®®. Three human mutations causing inherited deafness (pcdh-15p1s76”’, cdh-
23010162, and pcdh-15g1136°") and one mouse mutation that accelerates progressive
hearing loss (cdh-23s47p%°) are located within the crystallized pcdh-15+cdh-23 complex
(Supplementary Figs 1¢ & 15). Our data provide a structural context to interpret their



effect on tip link function. We also constructed all four mutants to test formation of
heterophilic complexes in vitro with ITC and SEC, finding that they each affect the pcdh-
15+cdh-23 complex in different ways. Cdh-23pioig, €dh-23s47p, and pcdh-15g1136
refolded well as assessed by SEC, whereas pcdh-15p357¢ did not and its analysis was not
possible. The D101G and S47P cdh-23 fragments crystallized in complex with pcdh-15
and show only minor changes in the interface and in binding (Fig. 2c, Supplementary
Discussion and Supplementary Fig. 16). On the other hand, pcdh-15g1136 showed
impaired binding to cdh-23.

Residue pcdh-15g;13 is of particular interest because it is at the interface between pcdh-15
and cdh-23 (Fig. 2h). Mutation R113G, causing human non-syndromic deafness
DFNB23%, eliminates the long arginine sidechain that flanks the hydrophobic core of this
interface and disrupts its integrated hydrogen-bond network. SEC of either co-refolded or
independently refolded proteins showed no evidence of pcdh-15gr1136+cdh-23 complex
formation (Fig. 4b and Supplementary Fig. 2). Furthermore, ITC experiments show
impaired binding and indicate an estimated Kp at least an order of magnitude larger than
that measured for wild-type pcdh-15+cdh-23 (>20 uM, Fig. 2c and Supplementary Fig.
8). In other work, R113G impaired binding of full-length protocadherin-15 and cadherin-
23 in vitro®, as well as binding of protein fragments to hair-cell tip links ex vivo'.
Together, these observations help validate the interface observed in our crystal structure
and indicate that this mutation causes deafness by directly interfering with binding
between cadherin-23 and protocadherin-15. Residual interactions detected in ITC
experiments may explain why vestibular function is not affected in human subjects

carrying this mutation®’.

In summary (Supplementary Fig. 1), the pcdh-15+cdh-23 structure provides the first view
of a heterophilic cadherin complex, revealing a novel “extended handshake” interface
that simulations predict to be mechanically stronger than required to resist forces
produced by moderate sound. The structure helps explain the Ca®* sensitivity of the tip
link, and the etiology of certain inherited deafnesses. For other cadherins, both the

existence of heterophilic cadherin bonds and the possibility of interdigitation have been



debated®. While protocadherin-15 and cadherin-23 are rather specialized members of the
cadherin family, the overlapping heterophilic complex formed by these molecules
suggests structural determinants that could also favor this type of interactions in related
members of the cadherin family, such as the fat3 and fat4 cadherins that control neuronal

morphology and morphogenesis® (Supplementary Discussion).

Methods Summary

Wild-type and mutant mouse cadherin-23 repeats EC1+2 and protocadherin-15 EC1+2
were subcloned into pET21a, expressed independently in BL21CodonPlus(DE3)-RIPL,
purified under denaturing conditions with Ni-sepharose beads, and then mixed and co-
refolded in six steps at 4°C. Refolded proteins were further purified by SEC. Crystals
were grown by vapor diffusion, cryoprotected, and cryo-cooled in Nj. X-ray diffraction
data were collected as indicated in Supplementary Tables 1&2. Structures were
determined by molecular replacement. ITC experiments were carried out using a
MicroCal ITCyy calorimeter with buffer-matched samples at 10°C. Analytical SEC was
performed on a Superdex200 PC3.2/3.0 column on an AKTAmicro. Systems for MD
simulations were prepared with VMD. MD simulations were performed using NAMD 2.7
or Anton with the CHARMMZ27 force field, the CMAP correction, and the TIP3P water

model. Interfaces of complexes were analyzed with VMD and the PISA server.
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Legends to Figures

Figure 1. Structure of tip-link protocadherin-15 bound to cadherin-23. a, Hair-cell
stereocilia bundle. A tip-link filament extends from the tip of each stereocilium to the
side of its tallest neighbour. b, The tip link formed by a protocadherin-15 parallel dimer
interacting tip-to-tip with a cadherin-23 parallel dimer®. These proteins feature 11 and 27
extracellular cadherin (EC) repeats, respectively. Inset shows possible arrangement at the
junction. ¢, Ribbon diagram of protocadherin-15 EC1+2 (pcdh-15; purple) bound to
cadherin-23 EC1+2 (cdh-23; blue) with Ca** ions as green spheres. Arrowheads indicate
pcdh-15’s RGGPP loop and cdh-23’s 33 helix. Residues R113, C11, and C99 of pcdh-15
are shown in stick representation. d, Detail of disulfide bond C11-C99 and isoform-
dependent residues D4-Y8 at the pcdh-15 N-terminus. e, Detail of Ca?*-binding sites 1, 2,
and 3 at the pcdh-15 linker. Protein backbone and sidechains are in cartoon and stick
representations, respectively. f, Surface representation of pcdh-15 (purple and pink) and
cdh-23 (blue and cyan) as in (c). g, Pcdh-15 and cdh-23 interaction surfaces exposed with
interfacing residues labeled.

Figure 2. Pcdh-15+cdh-23 complex formation probed using isothermal titration
calorimetry (ITC) and site-directed mutagenesis. a, Raw power vs. time data for pcdh-15
(111 pM) titrated with cdh-23 (1.1 mM) at 10°C (black, WT-WT). Inset shows raw data
(blue) for pcdh-15;224 (114 uM) titrated with cdh-23; 1456 (1.2 mM). b-c, Change in molar
enthalpy for pcdh-15 titrated with cdh-23 (black); pcdh-15,2,4 with cdh-23 (light green);
pcdh-15 with cdh-23 1456 (dark green); pcdh-15,204 With cdh-23| 145 (blue); pcdh-15 with
cdh-23s47p (Vviolet); pcdh-15g1136 With cdh-23 (magenta); and pcdh-15 with cdh-23p1016
(indigo; concentrations in Supplementary Fig. 8). Sigmoidal isothermals were observed
only for pcdh-15+cdh-23 and pcdh-15+cdh-23s47e. d-h, Details of pcdh-15+cdh-23
interface, highlighting residue L145 (e), the RXGPP loop (f), and residues 122 (g) and
R113 (h). Panel (h) is a 180°-rotated version of panel (g). Protein backbone and
interfacing residues (as identified by PISA) are in purple/pink for pcdh-15 and blue/cyan
for cdh-23.

Figure 3. Mechanical strength of the pcdh-15+cdh-23 complex probed by steered
molecular dynamics (SMD) simulations. a, Snapshots of pcdh-15 (purple) and cdh-23
(blue) unbinding during simulation SNA7 (Supplementary Table 3). The complex is
shown in both cartoon and surface representations at the beginning, and in surface
representation at indicated time points. Force was applied to the C-termini of both
protomers (Supplementary Movies I&I1). Green arrows point to broken interfaces. b,
Region of gray box in panel (a), showing interacting residues during unbinding. c, Force
applied to one C-terminus versus distance between C-termini ends of pcdh-15 and cdh-
23. Different traces correspond to independent simulations performed at stretching speeds
of 10 (blue and black), 1 (light and dark green), 0.1 (cyan, 1-ns running average shown in
black), and 0.02 nm/ns (magenta, 1-ns running average). Snapshots in (a) are indicated by
arrowheads. d, Maximum force-peak values vs. stretching speed for unbinding
simulations of pcdh-15+cdh-23 started after a 1-ns or 1-us equilibration (light green, SN2
to SN6; dark green, SNA2 to SNA7; cyan, SN10 to SN13). Simulations SN2-SN6 and



SNA2-SNA7 used the S1b structure and SN10-SN13 used Sla; unbinding forces for all
three sets were equivalent.

Figure 4. Pcdh-15+cdh-23 complex formation, its Ca**-dependence, and the role of the
deafness mutation R113G, probed using analytical size exclusion chromatography (SEC).
Individual traces represent independent experiments. a, top, SEC traces for pcdh-15 and
cdh-23 with Ca?* (red and blue) or with 5 mM EGTA (purple and cyan). A shift upon
Ca®* removal by EGTA was observed for pcdh-15 (purple vs. red curves). middle, SEC
traces for pcdh-15+cdh-23 in the presence of Ca®* (light green) or 5 mM EGTA (dark
green). The summation of a purple and a cyan curve from above is shown as a dashed
line. The EGTA-treated complex behaved as the sum of its EGTA-treated components,
indicating Ca**-dependent complex formation. bottom, Coomassie-stained SDS-PAGE
of eluted fractions from EGTA-treated proteins. b, top, SEC traces for mutant pcdh-
15r1136 alone (maroon), and mixed with cdh-23 (orange). Wild-type proteins from (a) are
shown for comparison. bottom, Coomassie-stained SDS-PAGE of eluted fractions
aligned to chromatogram. A reproducible shift in elution volume was observed for the
wild-type (green) but not for the mutant mixture (pcdh-15g113c+cdh-23; orange). The
shifted peak (1.61 ml) contained both proteins (1.56 to 1.64 ml fractions).
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Online Methods

Cloning, expression, and purification of protocadherin-15 and cadherin-23 repeats
Clones of mouse cadherin-23 repeats EC1 and EC1+2 were previously described™.
Numbering corresponds to mouse cadherin-23 and protocadherin-15 without their signal
sequences. Mouse protocadherin-15 EC1+2 comprising residues Q1 to D233 (Q27 to
D259 in NP_001136218.1) was subcloned into the Ndel and Xhol sites of the vector
pET21a (C-terminal His-tag). The signal sequence was replaced by a methionine at
position 0. The R113G, D157G, and 122A mutations in pcdh-15, as well as the L145G
and S47P mutations in cdh-23 were generated using the QuikChange Lightning
mutagenesis kit (Stratagene). All constructs were verified by DNA sequencing. Pcdh-15,
pth-15R113(3, pth-15D157G, pth-15|22A, th-23, th'23D101G7 th-23547p, and cadherin-
23 EC1 were expressed independently in BL21CodonPlus(DE3)-RIPL (Stratagene)
cultured in LB and induced at ODgp=0.6 with 100 uM IPTG at room temperature for ~16
hrs. Cells were lysed by sonication in denaturing buffer (20 mM HEPES at pH 7.5, 6 M
guanidine hydrochloride [GuHCI], 10 mM CaCl,, 20 mM imidazole at pH 7.0). The
cleared lysates were loaded onto Ni-sepharose (GE Healthcare) and eluted with
denaturing buffer supplemented with 500 mM imidazole. Wild-type and mutant Pcdh-15
protein fragments were reduced by adding 1 mM DTT and incubating at 37°C for ~30
min. Purified and denatured samples were mixed (pcdh-15+cdh-23, pcdh-15g;136+cdh-
23, pcdh-15p;576+cdh-23, pcdh-15+cdh-23p1016, pcdh-15+cdh-23s47p, pcdh-15+cadherin-
23 EC1, pcdh-15gii3c+cadherin-23 EC1, and pcdh-15,a+cadherin-23 EC1) and co-
refolded in six steps at 4°C using MWCO 2000 membranes (protocol adapted from ref
31). First, the mixture was dialyzed for 24 hrs against D buffer (20 mM Tris HCI pH 8.0,
10 mM CaCl,) with 6 M GuHCI, followed by two 24-hr dialyses against D buffer with 3
and 2 M GuHCI, respectively. The last three steps consisted of 12-hr dialyses against D
buffer with decreasing GUHCI concentration (1, 0.5, and 0 M) plus 400 mM L-Arg and
375 uM GSSG. Refolded protein used for crystallization was further purified in two
consecutive size-exclusion chromatography (SEC) experiments with relevant fractions on
a Superdex75 column (GE Healthcare) in 20 mM TrisHCI pH 8.0, 200 mM KCI, with 10
and 1 mM CacCl,, respectively. Predicted and apparent molecular weights (SDS-PAGE)
for pcdh-15 and cdh-23 fragments were 27.5/37 kDa and 23.8/25 kDa, respectively.
Identity of pcdh-15 was confirmed through N-terminal sequencing.

Crystallization, data collection, and structure determination

Crystals were grown by vapor diffusion at 4°C by mixing equal volumes of protein (5-10
mg/ml) and reservoir solution of (0.1 M MES pH 6.5, 8% w/v PEG 8000) for S1a, (0.1 M
MES pH 6.5, 15% w/v PEG 550 MME) for S1b, (0.1 M HEPES pH 7.5, 10% w/v PEG
8000) for S2, (0.1M MES pH 6.5, 8% w/v PEG 20000) for S3, and (0.1M MES pH 6.5,
12% PEG 4000) for S4. All crystals were cryoprotected in reservoir solution plus 25%
glycerol and cryo-cooled in N,. X-ray diffraction data were collected as indicated in
Supplementary Tables 1&2 and processed with HKL2000%. Structures were determined
by molecular replacement using the cdh-23 structure (pdb code 2wcp) and a pcdh-15
homology model (based on the same cdh-23 structure) as search models with Phaser®.
Model building was done using COOT** and restrained TLS refinement using
REFMAC5®. The final models include residues M0 to E207 (cdh-23) and MO to H237



(pcdh-15) for S1la, MO to E207 (cdh-23) and Q1 to H236 (pcdh-15) for S1b, MO to E207
(cdh-23 A and B) and Q1/Y2 to H237 (pcdh-15 C and D) for S2, MO to D205 (cdh-
23p1016 and cdh-23s47p) and MO to H236/H237 (pcdh-15) for S3 and S4. Data collection
and refinement statistics are provided in Supplementary Tables 1&2. Coordinates have
been deposited in the Protein Data Bank with entry codes 4apx (S1a), 4axw (S1b), 4aq8
(S2), 4aqa (S3), and 4age (S4).

Isothermal titration calorimetry

ITC experiments were carried out using a MicroCal ITCyy calorimeter and designed
following guidelines from Thomson and Ladbury™® and the manufacturer’s manual. Wild
type, 122A and R113G pcdh-15 fragments were co-refolded with cadherin-23 EC1 as
described above, and subsequent SEC was performed on a Superdex75 column with 20
mM TrisHCI pH 8.0, 300 mM NaCl, and 1 mM CacCl,. Fractions with pure pcdh-15,
pcdh-15i204, and pcdh-15g113¢ were collected, concentrated (to 100 to 150 uM) and
placed in the calorimeter’s sample cell. Similarly, wild type, L145G, D101G, and S47P
cdh-23 fragments were refolded as previously described'®, concentrated (to 1 to 2 mM),
buffer-matched through SEC, and then used as titrants. Protein concentrations were
measured using samples’ absorbances at 280 nm and theoretical extinction coefficients.
All experiments were performed at 10°C, as no signal was detected and the protein
tended to be unstable at room temperature. In a typical experiment, an initial 0.5-ul
injection (disregarded in analyses) was followed by fifteen 2.44-ul injections of titrant (At
= 3 min). Experiments and controls with each combination of fragments were repeated at
least once (Supplementary Fig. 8). Fittings and binding constants were obtained using the
MicroCal Software, a model with one set of sites, and blank-subtracted data. Fitting
parameters are reported for saturating sigmoidal curves as the averagets.d. of two
independent experiments. Attempts to obtain saturating sigmoidal curves and precise Kps
for mutant proteins were hampered by aggregation of protein samples at the high
concentration required (>2 mM).

Analytical size exclusion chromatography

SEC of co-refolded proteins (pcdh-15+cdh-23, pcdh-15g1136+cdh-23, pcdh-15p;576+cdh-
23, pcdh-15+cdh-23p1016, pcdh-15+cdh-23s47p, pcdh-15+cadherin-23 EC1, and pcdh-
15r1136+cadherin-23 EC1) was performed on a Superdex75 16/60 column with 20 mM
TrisHCI pH 8.0, 300 mM NaCl and 1 mM CaCl; (Supplementary Fig. 2). Fractions with
pure cdh-23 (excess from pcdh-15+cdh-23), pcdh-15 (from pcdh-15+cadherin-23 EC1),
and pcdh-15g1136 (from pcdh-15g1136+cadherin-23 EC1) were collected, concentrated
(~0.5 mg/ml), and used for subsequent analytical SEC (Fig 4a,b) on a Superdex200
PC3.2/3.0 column equilibrated with the same buffer (plus 5 MM EGTA when indicated).
Experiments were performed at 4°C using a 10 ul loop and a 50 pl/min flow rate on an
AKTAmicro system equipped with a fused silica capillary tubing for collection of 40 pul
fractions. EGTA was added to individual or pre-mixed concentrated samples followed by
a 1 hr mild shaking prior to SEC.

Simulated systems
The psfgen, solvate, and autoionize VMD?*" plug-ins were used to build all systems
(Supplementary Table 3) as previously reported™. Most of the pcdh-15+cdh-23 complex



simulations used structure S1b (which we determined first) except simulations SN9 to
SN13 (which used higher resolution structure Sla; Supplementary Tables 1 and 3).
Structures with non-native N- and C-terminal tails were modified back to native
sequences. Systems without bound Ca** were prepared by replacing Ca** atoms with K*.

Molecular dynamics simulations using NAMD

MD simulations were performed using NAMD 2.7%, the CHARMM27 force field for
proteins with CMAP correction®*“°, and the TIP3P model for water. Simulation
parameters were as in ref 16, except for simulations SNA7 and SNCG6, in which a
multiple-time-step scheme was used with electrostatic interactions evaluated every other
time step. Parameters for Ca®* were from ref 41. Each system was energy-minimized,
then equilibrated in the constant number, pressure, and temperature ensemble (NpT), and
the resulting state used to perform subsequent Anton or SMD simulations®. All
simulations used T=310 K. Coordinates of all atoms were saved for analysis every
picosecond. Constant velocity stretching simulations used the SMD method and NAMD
Tcl Forces interface™®*,

Molecular dynamics simulations using Anton

Anton is a massively parallel special-purpose machine for molecular dynamics
simulations*. Systems pre-equilibrated in NAMD (1.1 ns, T=310 K) were converted to
the Anton-compatible Maestro format using the convertNAMDtoMaestro.py script
provided by NRBSC/PSC. Anton and NAMD simulations used the same force field.
Hydrogen atoms were constrained with SHAKE. Restraints were applied to C, atoms of
residues 121, 173, and 205 of cdh-23 to avoid rotation of the complex and contact
between periodic images. A multiple-time-step scheme was used with interactions
evaluated every 2.5 fs, except for non-bonded interactions computed every other time
step. A set of cutoff radii and parameters for evaluation of electrostatic forces was
automatically generated for each simulated system using the guess_anton_config script.
Simulations were performed in either the constant number, volume, and temperature
ensemble (NVT) using the Nose-Hoover thermostat, or the constant number, pressure,
and temperature ensemble (NpT) using the Berendsen thermostat/barostat. Center of
mass motion was removed. Coordinates of all atoms were saved for analysis every 50
(NpT) or 200 (NVT) picoseconds. Anton simulations are restricted in size (<120,000
atoms) and cannot incorporate SMD-like forces, hence the use of complementary NAMD
simulations.

Analysis tools

The Protein Interfaces, Surfaces and Assemblies (PISA) server was used to analyze
complex interfaces® and identify residues shown in Figs 1g and 2d. The VMD “measure
SASA” command was used to determine interface area throughout simulations with a
probe radius of 1.4 A. Interface area was defined as the difference in total solvent-
accessible surface areas for each isolated protomer and for the complex divided by two.
Glycosylation sites were predicted using OGPET*®, NetNGlyc* and NetOGlyc*.
Intradomain RMSD and interdomain flexing were analyzed using DynDom®®. Regression
fits to data points of maximum force peaks versus stretching speeds were performed
using a logarithmic expression of the form y = a + b log x. Plots and curve fits were



prepared using xmgrace. Molecular images in this paper were created with the molecular
graphics program VMD?', except for Supplementary Fig. 5 which used PyMOL
(Schrodinger, LLC).
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Supplementary Discussion

Cadherin dissociation constants

Reported Kp values for classical cadherins™®? have been measured using analytical
ultracentrifugation and range from ~1 to ~100 uM at 25°C. Measurements for type Il
cadherins indicate Kp values in the lower uM range, while values for type | cadherins are
usually >20 uM. For instance, a type Il VE-cadherin construct with 5 EC repeats has a
Ko of 1 uM at 25°C*2, while Kp values for type | N-cadherin EC1+2 are ~26 uM at
25°C>!. Interestingly, some classical cadherin Kp values are temperature dependent
(values for type | E-cadherin EC1+2 at 25°C and 37°C differ almost two-fold: 96.5+10.6
to 160+21.3 puM), while others (N-cadherin) are temperature independent™. Our ITC
measurements at 10°C indicate that the pcdh-15+cdh-23 bond is entropy-driven,
suggesting temperature-dependence such that its Kp could be <1 uM at 37°C. The Kp of
2.9 uM reported here for pcdh-15+cdh-23 is in the lower range of the values measured
for classical type Il cadherins, although a proper comparison would require matching
techniques and experimental conditions.

Predictions from simulations, tip link mechanics, and physiological time scales
Molecular dynamics simulations have usually been limited to nanoseconds, with SMD
simulations using non-physiological stretching speeds to induce conformational changes
within this achievable time scale*’. However, even when using such fast pulling speeds,
SMD simulations have correctly predicted the mechanical properties of multiple proteins,
such as ankyrin®® and C-cadherin®®, as determined by subsequent (independent) AFM
experimental work pulling directly on them>*®. Transduction in the auditory system can
be extremely fast’ (< 10 us), presenting an interesting challenge for both SMD
simulations and AFM experiments. In vivo laser-velocimetry measurements of basilar
membrane mechanics (10 to 100 dB at or near the 10 kHz characteristic frequency)®
show motion at speeds of 10™ to 10 nm/ns. In addition, experimental stimulation of
hair-cell bundles is usually performed at speeds that can reach up to 0.018 nm/ns**. We
therefore reduced the simulated stretching speed to 0.02 nm/ns, extending the time scale
of our simulations to hundreds of nanoseconds (15 ns/day of computing). Thus, the SMD
simulations reported here explore the response of tip-link proteins to stimuli like those of
loud sound, while still providing insights into the force-bearing elements of the bond
formed by pcdh-15 and cdh-23. Alternative pulling experiments can only complement
our results, as the AFM cantilever can only reach pulling speeds < 10” nm/ns, covering
low frequency or weak sound-like stimuli. In addition, these types of experiments only
provide limited information about the structural and molecular details of forced
unbinding and unfolding pathways. While our simulation results are still limited by force-
field imperfections and model assumptions®®, we expect that they will guide the
interpretation of the experimental exploration of the tip link’s mechanical properties and
the pcdh-15+cdh-23 bond.

Dynamics of pcdh-15 and cdh-23 contacts during unbinding

Trajectories of pcdh-15+cdh-23 forced unbinding were monitored to determine which
molecular events were correlated with detachment and associated force peaks. In all our
simulations with bound Ca?*, full detachment of one protomer from the other was



preceded by rupture of contacts other than those mediated by residues near R113 in pcdh-
15 (see green arrows in Fig. 3a and Supplementary Fig. 10a), by sliding of residues
located near a 330 helix within strand A of cadherin-23 EC1 (Y16, L18) over the RXGPP
loop of pcdh-15 (Fig. 3a,b and Supplementary Fig. 10a-c), and finally by rupture of the
pcdh-15g;13 — cdh-23g77 salt bridge. In some cases further transient and weak interactions
between the N-termini of pcdh-15 and cdh-23 ensued. We further analyzed the two
slowest SMD simulations, SN6 and SNA7, which started from different initial conditions,
by monitoring distances between residues at four locations: the tip of pcdh-15 and the
adjacent EC2 repeat of cdh-23 (pcdh-15v10s — cdh-23.145); the center of the interface
(pcdh-15g113 — cdh-23g77 and pcdh-152, — cdh-23y16); and the tip of cdh-23 and the
adjacent residues in pcdh-15 (pcdh-15ggs — cdh-23n96).  Distances plotted in
Supplementary Fig. 11 confirmed the sequence of events described above. While the
pcdh-15g;13 — cdh-23g77 salt bridge seems to break last, it is unclear whether its head-to-
head conformation facilitates sliding or actually provides resistance during unbinding.
Interestingly, unbinding forces for all simulations in which the complex was equilibrated
over 1 us were slightly larger than those monitored for simulations in which the same
complex was equilibrated for only 1 ns. This was correlated with an increase in interface
area during equilibration (Supplementary Fig. 14).

Unbinding and unfolding of tip-link EC repeats

In simulations performed with Ca**-bound proteins, unbinding forces between pcdh-15
and cdh-23 are smaller than forces required to unfold EC1+EC2 repeats'®. Therefore,
under normal conditions, our simulations predict that the two tip-link cadherins unbind
before either unfolds. However, pcdh-15+cdh-23 unbinding forces are similar to
unfolding forces in the absence of Ca®*. Thus unfolding may occur before unbinding
when EC repeats cannot bind Ca”". Indeed, stretching simulations of the Ca®*-free
complex showed unfolding of EC repeats before unbinding at almost all stretching speeds
(Supplementary Fig. 17). At the slowest stretching speed (0.1 nm/ns), the complex
separated before EC repeats unfolded, yet linker regions in both protomers were
completely extended and exposed with partial unfolding of some B-strands before
complex separation. Deafness mutations impairing Ca®* binding in EC repeats not
directly involved in the interface between protocadherin-15 and cadherin-23 may weaken
the tip-link without affecting complex formation, by promoting unfolding before
unbinding upon mechanical stimulation®**°. The exposure of the naked linkers and
unfolding of repeats might also have deleterious effects in the long term, with mis-
refolding or enzyme-mediated degradation causing malfunction of tip-links with impaired
Ca?*-binding capabilities.

Molecular mechanisms of Ca?* dependence

To reveal the molecular mechanisms underlying dissociation upon Ca®* removal we
performed microsecond-long molecular dynamics simulations™ of the pcdh-15+cdh-23
structure S1b. Simulations with bound Ca?*, lasting over 1 ps, showed a stable system
with RMSD values < 4.4 A for the complex, < 3 A for cdh-23, and < 3.8 A for pcdh-15
(Supplementary Fig. 13). In contrast, the simulated complex without bound Ca®* was not
stable and RMSD quickly reached values >> 5 A. The complex did not dissociate during
the simulations, but rather became deformed due to inter-repeat motion of individual



protomers (Supplementary Figs 13b,c & 14, and Movies 111&IV). Individual EC repeats
did retain their fold, with RMSD values not exceeding 3.6 A (Supplementary Fig. 13d).
In one of the simulations performed in the absence of Ca** we observed loss of some of
the native contacts seen in the crystal structure (Supplementary Movie V). Thus, the
complex may unbind in the absence of Ca®" at longer time scales as a consequence of the
increased dynamics of individual components (entropic stress). Unbinding may also be
accelerated by other factors such as tension in the tip link. Overall, the simulations
predict the existence of a transient Ca®*-free complex and show how Ca®* provides
rigidity for each EC1-EC2 linker, which in turn maintains the binding interface of pcdh-
15+cdh-23. Loss of Ca®* from sites 1, 2 and 3 makes the EC-EC junction less rigid, and
flexion then distorts the binding interface. This mechanism may apply to classical
cadherins as well®®®2 where transient Ca**-free dimers have been recently reported®®*,

Molecular mechanisms underlying inherited deafness

Four deafness mutations are located within the crystallized pcdh-15+cdh-23 complex:
pth-15D157G, th-23D101(;, pth'15R113G, and th-23547p. Pcdh-15 residue D157
coordinates Ca?* at site 3 and D157G may severely impair folding and/or Ca®* binding, as
has been shown for an equivalent D134A mutation in N-cadherin®. Consistently, the
pcdh-15p;357¢ fragment did not co-refold with wild-type cdh-23 (Supplementary Fig. 2c).
The cdh-23 D101 sidechain coordinates Ca* at site 2 and we showed experimentally®
that D101G decreases affinity for Ca**. Although D101 is at the interface between pcdh-
15 and cdh-23, the sidechain does not participate in interactions with pcdh-15.
Consistently, the cdh-23p10;c mutant co-refolded and interacted with pcdh-15 just like
wild-type cdh-23 in SEC at 1 mM CaCl, (Supplementary Fig. 2c,d). Yet ITC experiments
show decreased affinity between pcdh-15 and cdh-23p;016 (Fig. 2¢). A crystal structure of
pcdh-15+cdh-23p101c does not show significant changes at the interface (overall
backbone RMSD 0.32 A, Supplementary Fig. 16a). Thus, increased flexibility at the
linker of cdh-23, even in the presence of bound Ca**, may explain altered binding®. At
very low Ca®* concentrations, this mutation may further impair complex formation or
accelerate unfolding of a tip-link EC repeat during mechanical stimulation, as seen in our
SMD simulations of the complex without bound Ca** (Supplementary Discussion above
and Supplementary Fig. 17). In contrast to the previous mutations and to R113G
(discussed in the main text), S47P in cdh-23 did not affect complex formation with pcdh-
15 in either SEC or ITC experiments (N = 0.86; Kp = 2.4 uM, T = 10°C, AH = 7181
cal/mol, AS =51.1 cal/mol/deg; Fig. 2c and Supplementary Figs 2c,d, 8 & 16). Moreover,
this mutation is not expected to affect Ca®* binding as it is not located near a Ca*-
binding site nor does it modify a charged residue. A crystal structure of pcdh-15+cdh-
23s47p does not show significant changes at the interface (overall backbone RMSD 0.2
A). However, a B-strand forming hydrogen bond is disrupted by this mutation, with a
water molecule supplying the missing interaction and pushing the backbone of S47P
away from the protomer (Supplementary Fig. 16). Thus, S47P may have a more subtle
effect on the structural stability of the cdh-23 EC1 repeat, or may instead disrupt protein
synthesis, processing, or localization.

Interestingly, the different biochemical effects of deafness mutations studied here
correlate with the severity of the inner-ear phenotype. We were unable to co-refold the



pcdh-15p1576 fragment, which causes both profound deafness and vestibular dysfunction.
Mutations pcdh-15g1136 and cdh-23p;016 impaired but did not abolish complex formation
and Ca®* binding, respectively, and both cause severe to profound deafness but without
obvious phenotype in the less mechanically-demanding vestibular system?”%. Lastly, the
cdh-23s47p mutation did not produce any obvious biochemical effects, but rather a subtle
structural effect that is consistent with its possible role in progressive rather than severe
hearing loss?®. Our data also suggest treatments in certain cases. Increase in Ca*
concentration of the endolymph, or reduced exposure to loud noise might help subjects
with mutations D101G and R113G, respectively, but may not be effective for those with
the D157G mutation.

Structural determinants of heterophilic contacts

Details of the interaction between pcdh-15 and cdh-23 revealed by our structure, such as
the involvement of EC2 repeats, suggest that the current EC1-based phylogenetic
classification of the cadherin superfamily may need adjustments, especially if used to
determine which members may interact with each other. Here we highlight structural
elements and sequence motifs that may define analogous heterophilic cadherin
complexes. A long and stable N-terminus, along with an exposed patch of hydrophobic
and charged residues, seems to be necessary for a pcdh-15+cdh-23-like heterophilic
interface. In addition, key interactions and salt-bridges (such as those between R113 in
pcdh-15 and E77/Q98 in cdh-23) may provide the selectivity that prevents the same
antiparallel binding for homophilic complexes or favors further overlapping with specific
EC repeats (Supplementary Figs 18&19). A simple protein BLAST search for sequence
motifs forming the N-termini of pcdh-15 and cdh-23, as well as their heterophilic
interface, reveals some candidate heterophilic complexes. While the RXGPP loop at the
N-terminus of pcdh-15 is rather unique among cadherins, the pcdh-15 EVRIVVR motif
with R113 in the middle (Fig. 2h) is also found in Mus musculus fat4 at the same location
in EC1 (EVRVLVR). Similarly, a search for the cdh-23 KVNIQV motif with interfacial
residues N96 and Q98 (Fig. 2h) reveals an identical motif in EC1 of Mus musculus fat3.
Interestingly, the cdh-23 KSEFT motif with the interfacial residue E77 is also similar to
the QDNYL at the same location in EC1 of fat3. These facts, and sequence alignments
(data not shown), suggest that fat4 and fat3 share several features important for
heterophilic interactions. Analysis of pcdh-21 and pcdh-24 sequences reveals similarities
with cdh-23, suggesting that these proteins may form heterophilic complexes with other
cadherins. Evidently, a more thorough analysis with homology models is required to
determine if pcdh-15+cdh-23-like complexes can be formed by fat3 and fat4, and
whether pcdh-21 and pcdh-24 can form heterophilic complexes with other cadherins.
However, the sequence motifs and structural elements discussed here provide a first step
to search for novel heterophilic cadherin complexes and establish their biological
relevance. It would be important to determine if pcdh-15 and cdh-23 can interact with
other cadherin molecules as well. Protocadherin-15 is widely expressed in the brain and
several tissues including kidney, lung, and pancreas®; it may feature polymorphisms
positively selected in humans®’, and has been associated with retinal disorders, lipid
abnormalities®®, and cancer®. The present study opens the door to exploring its function
in different tissues from a structural point of view.



Supplementary Movie Legends

Movie | (A&B)

Forced unbinding of pcdh-15+cdh-23 (simulation SNA7; trajectory shown from t = 270
ns up to t = 336 ns). Protein is depicted in cartoon representation, with pcdh-15 in purple,
cdh-23 in blue, and Ca?* in green. C-terminal C, atoms are red. Molecular surfaces for
pcdh-15 and cdh-23 are shown in transparent purple and blue. Version B shows the same
trajectory with opaque molecular surfaces.

Movie Il (A&B)

Details of pcdh-15+cdh-23 forced unbinding (simulation SNA7; trajectory shown from t
= 270 ns up to t = 336 ns). Protein is depicted as in Movie |, with residues at the interface
shown in stick representation. Molecular surfaces are not shown in movie version A.
Version B shows opaque and transparent surfaces for pcdh-15 and cdh-23, respectively.

Movie Il1

Equilibration of pcdh-15+cdh-23 in the presence of Ca®* (simulation SA1, lasting 1 ps).
Protein is depicted in cartoon representation. Pcdh-15 is in purple, cdh-23 in blue, and
Ca®" in green.

Movie IV

Equilibration of pcdh-15+cdh-23 in the absence of Ca?* (simulation SA3, lasting 1 ps).
Protein is depicted in cartoon representation and colored as in movie IlI.

Movie V

Dynamics of contacts between pcdh-15 and cdh-23 during equilibrium MD simulations.
Contact maps between residue pairs involved in the pcdh-15+cdh-23 interface are shown
throughout microsecond-long MD simulations performed in the NpT ensemble with and
without Ca®* (SA1 left; SA3 right). The distance between pairs of C,, atoms is displayed
using a linear gray scale (0 A: black; >10 A: white). A red box highlights location of
native contacts lost at the end of simulation SA3 without Ca*".



Supplementary Tables

Supplementary Table 1. Statistics for pcdh-15+cdh-23 structures

Data Collection and Refinement Structure Sla Structure S1b Structure S2
Space group C2 C2 C2
Unit cell parameters:
a, b, c(A) 173.61,40.47,84.62  173.65,40.47,85.19  158.75, 57.03,
156.16
o, B,y (°) 90, 103, 90 90, 103, 90 90, 99, 90
Molecules per asymmetric unit 1 1 2
Beam source APS 24-ID-E ALS 4.2.2 APS 24-ID-E
Wavelength (A) 0.97949 1.13841 0.97949
Resolution limit (A) 1.65 2.23 2.63
Unique reflections 66,852 (3,184) 27,442 (1,236) 41,589 (2,017)
Redundancy 3.7 (3.6) 3.4(2.9) 3.7(3.6)
Completeness (%) 96.9 (92.8) 96.2 (87.5) 100 (99.8)
Average l/o(l) 25.6 (2.8) 10.7 (2.7) 16.9 (2.6)
Rmerge 0.05 (0.48) 0.10 (0.39) 0.08 (0.51)
Refinement
Resolution range (A) 32.03-1.65 41.08-2.23 38.57 - 2.63
(1.70 - 1.65) (2.29 - 2.23) (2.69-2.62)
Residues (atoms) 446 (4,550) 444 (3,924) 889 (7,517)
Water molecules 823 348 480
Ruork (%) 16.1 (28.7) 17.5 (25.0) 18.9 (34.6)
Riree (%) 19.3 (31.7) 23.6 (31.6) 24.3 (38.8)
RMS deviations
Bond lengths (A) 0.010 0.017 0.010
Bond angles (°) 1.415 1.543 1.201
B-factor average
Protein 22.49 29.53 43.18
Ligand/ion 24.52 42.16 31.07
Water 38.41 35.99 41.11
Ramachandran Plot Regions®
Most favored (%) 90.7 90.7 88.5
Additionally allowed (%) 8.8 9.1 10.9
Generously allowed (%) 0.5 0.3 0.6
Disallowed (%) 0.0 0.0 0.0
Interface Area (A% 907 898 1160
1069
PDB ID code 4apx daxw 4ag8

dComputed with PROCHECK



Supplementary Table 2. Statistics for mutant pcdh-15+cdh-23 structures

Data Collection and Refinement

Structure S3
pth'15+th'23DlOlG

Structure S4
pth'15+th'23547p

Space group
Unit cell parameters:

a, b, c(A)

C2

173.29, 40.51, 84.63

C2

174.02, 40.87, 84.78

o, B,y (°) 90, 103, 90 90, 103, 90
Molecules per asymmetric unit 1 1
Beam source APS 24-1D-E APS 24-1D-E
Wavelength (A) 0.97919 0.97919
Resolution limit (A) 1.96 2.26
Unique reflections 41,729 (1,981) 27,207 (1,318)
Redundancy 3.4 (2.9 3.5(3.1)
Completeness (%) 99.4 (95.5) 99.2 (96.8)
Average l/o(l) 8.5(2.4) 9.6 (2.3)
Rmerge 0.11 (0.40) 0.13 (0.44)
Refinement
Resolution range (A) 34.19 - 1.96 22.69 - 2.27

(2.00-1.96) (2.33-2.27)

Residues (atoms) 443 (4,155) 444 (3,945)
Water molecules 606 403
Rwork (%0) 17.8 (22.1) 17.3 (20.2)
Riree (%) 22.8 (29.9) 23.9 (29.0)
RMS deviations

Bond lengths (A) 0.009 0.011

Bond angles (°) 1.327 1.404
B-factor average

Protein 23.64 24.35

Ligand/ion 20.31 23.29

Water 31.97 28.24
Ramachandran Plot Regions®
Most favored (%) 91.1 90.4
Additionally allowed (%) 8.3 9.4
Generously allowed (%) 0.5 0.3
Disallowed (%) 0.0 0.0
Interface Area (A% 958 895
PDB ID code 4aga dage

®Computed with PROCHECK



Supplementary Table 3. Summary of simulations

Label Ensemble lon tsim SMD Speed Start Size Size
(ns) (nm/ns) (# atoms) (nm®)
SN1 NpT ca® 1.1° - - 195,123 26.6 x 9.6 x 8.1
SN2 NVE ca** 15 10 SN1
SN3 NpT Ca** 1.4 10 SN1
SN4 N\F}E Ca? 7.1 1 SN1
SN5 NpT ca® 6.6 1 SN1
SN6 NpT ca® 53.4 0.1 SN1
SN7 NpT ca” 1.17° - - 108,720 15.0x 9.6 x 8.1
SN8 NpT K* 1.1° - - 108,722
SN9 NpT ca® 1.1° - - 221,389 27.0x9.8x 8.8
SN10 NVE Ca** 15 10 SN9
SN11 NpT Ca** 15 10 SN9
SN12 N\F}E ca* 95 1 SN9
SN13 NpT ca® 6.3 1 SN9
SA1 NpT ca” 1000.0 - SN7 108,720 15.0x 9.6 x 8.1
SA2 NVT ca* 2000.0 - SN7
SA3 NpT K* 1000.0 - SN8 108,722
SA4 NVT K* 2000.0 - SN8
SNAL NpT Ca%* 5.1° - SA1P 193,446 26.6x9.6x 8.1
SNA2 NVE Cai* 15 10 SNA1
SNA3 NpT ca* 15 10 SNA1
SNA4 N\p/E ca* 10.6 1 SNAL1
SNA5 NpT ca* 9.8 1 SNA1
SNA6 NpT ca®* 78.6 0.1 SNA1
SNA7 NpT ca** 336.1 0.02 SNA1
SNAS NpT K* 5.12 - SA3P 190,180 26.6x 9.6 x 8.1
SNA9 NVE K* 15 10 SNA7
SNA10 NpT K* 15 10 SNA7
SNA11 NVE K* 13.0 1 SNA7
SNA12 NpT K* 10.4 1 SNA7
SNA13 NpT K* 74.6 0.1 SNA7
SNAl14 NpT ca™ 1.1° - SA1P 377,668 26.0x9.5x 16.1
SNA15 NVE ca* 2.0 10 SNA14
SNA16 NpT ca* 1.6 10 SNA14
SNAL17 N\p/E ca* 10.3 1 SNA14
SNA18 NpT ca® 9.3 1 SNA14
SNA19 NpT ca** 74.3 0.1 SNA14
SNC1 NpT ca™ 1.1° - - 203,769 27.8x9.4%8.2
SNC2 NVE ca** 19 10 SNC1
SNC3 NpT Ca** 1.8 10 SNC1
SNC4 N\p/E Ca** 8.0 1 SNC1
SNC5 NpT ca® 7.4 1 SNC1
SNC6 NpT ca® 69.0 0.1 SNC1
SNC7 NpT ca** 257.6 0.02 SNC1

®These simulations consisted of 1,000 steps of minimization, 100 ps of dynamics with the backbone of the protein restrained (k = 1

Kcal/mol/A?), and the remaining time as free dynamics in the NpT ensemble (y=0.1 ps™).
PCoordinates of the final snapshot of SA1 or SA3 were used to build a system with a larger water box for SMD.

Summary of pcdh-15+cdh-23 and C-cadherin simulations. Labels indicate simulation platform (SN: NAMD; SA:
Anton; SNA: NAMD after Anton). C-cadherin simulations are labeled SNC. Ensembles are denoted according to the
thermodynamic quantities held constant (N: # atoms; p: pressure; T: temperature; V: volume; E: Energy). Occupancy
of binding sites at the beginning of the simulations is indicated in lon column. Initial coordinates and velocities (when
applicable) were obtained from the last frame of the simulations indicated in the Start column. Initial size of the system
(in nm®) is indicated in the last column. All pcdh-15+cdh-23 simulations used structure Sib, except for simulations
SN9 to SN13, which used structure Sla.



Supplementary Figures and Legends
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Supplementary Figure 1. Structural determinants of tip-link function in hearing and deafness. a,
The bond formed by protocadherin-15 and cadherin-23 does not involve B-strand exchange or
formation of an X-dimer as in classical cadherins®®°, and is not directly mediated by Ca®* as
previously suggested'®!’. An overlapped antiparallel dimer involving the N-terminal EC1+2
repeats of each protein forms the protocadherin-15 and cadherin-23 bond. Parallel
homodimerization is likely mediated by other repeats beyond EC2 in each protein. b, Ca*
chelation promotes disassembly of the pcdh-15+cdh-23 bond, as determined by SEC experiments.
Microsecond-long molecular dynamics simulations suggest that removal of Ca®* results in
entropic stress, which may lead to complex separation over a longer time scale or may facilitate
disassembly by mechanical force. A transient, Ca**-free complex is predicted to exist. c,
Deafness-related mutations are located in the pcdh-15+cdh-23 structure. Known phenotype
(auditory and/or vestibular) is indicated along with structural defects suggested by our
biochemical experiments, presented here and in ref 16.
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Supplementary Figure 2. SEC of co-refolded protocadherin-15 and cadherin-23 fragments. a,
Representative traces for wild-type protocadherin-15 EC1+2 co-refolded with cadherin-23 EC1+2
(pcdh-15+cdh-23, green), and mutant pcdh-15g1136 co-refolded with cdh-23 (pcdh-15g.136+cdh-
23, orange). Experiments were performed using a Superdex S75 16/60 column. Coomassie-
stained SDS-PAGE analysis of eluted fractions is shown below the chromatogram. Trace for co-
refolded pcdh-15+cdh-23 (green) shows two peaks; the first one, at 61.3 ml, contained both
proteins (complex) and was used for crystallization. The second peak (65 ml) contained cdh-23
alone. Trace for co-refolded pcdh-15g136+cdh-23 shows a single peak with no obvious shift in
elution volume for protein fragments. b, Representative trace for wild-type pcdh-15 co-refolded
with cadherin-23 ECL1 (red). The two protein fragments eluted independently from each other in
two peaks (69.7 ml and 81.2 ml) as indicated by Coomassie-stained SDS-PAGE of the eluted
fractions shown beneath the chromatogram. Similar results were obtained for pcdh-15gy136 and
pcdh-15,,4. Fractions from the first peak were used for further SEC or ITC (Figs 2 & 4). ¢, SEC
of co-refolded wild-type pcdh-15+cdh-23 and mutants involved in inherited deafness. Traces
indicate that mutations D101G and S47P in cdh-23 did not prevent complex formation. SEC of
co-refolded pcdh-15p57¢ + cdh-23 shows a single peak with negligible amounts of pcdh-15p;s7c.
d, SEC traces of refolded wild-type cdh-23 and mutants show single monodisperse peaks for all
samples. All SEC experiments in this figure were performed in the presence of 1 mM CaCl,.
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Supplementary Figure 3. Pcdh-15+cdh-23 structures showed nearly identical conformations for
individual pcdh-15 and cdh-23 fragments with flexing at the linker regions (up to ~10°). a,
Superposition of the Sla structure (darker colors) and the two complexes in the asymmetric unit
of the S2 structure. The three structures were superimposed on the cdh-23 EC2 repeat to
highlight the slight linker flexibility that results in mostly coordinated displacement of the EC1
repeat of cdh-23 and the EC2 repeat of pcdh-15. The buried surface area of the three complexes
is 907 A? for S1a, 1069 A? for S2 chains A and C, and 1160 A? for S2 chains B and D. The three
structures are shown as C, traces, with pcdh-15 in purple, cdh-23 in blue and Ca*" ions as green
spheres. Box indicates the approximate position of the detail shown in (b). b, Detail of interface
between pcdh-15 and cdh-23 for the three structures superimposed in (a). This region of the
interface is centered on residue R113, which when mutated causes deafness. Protein backbone
and surrounding residues are shown in cartoon (pcdh-15, purple; cdh-23, blue) and sticks (pcdh-
15, pink; cdh-23, cyan). In the top panel, the high-resolution structure showed alternative
conformations for a few sidechains, shown in gray.




pcdh-15 cdh-23 ©

Supplementary Figure 4. Topology diagrams for pcdh-15 and cdh-23. Protocadherin-15 repeats
EC1 and EC2 feature typical cadherin folds with seven B-strands labeled A to G. Pcdh-15 EC1
features a 3,5 helix and the C11-C99 disulfide bond (dashed line) linking B-strands F and A at the
N-terminus. Regions involved in heterophilic interactions are indicated with an asterisk (*).
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Supplementary Figure 5. Unique structural features of pcdh-15. Weighted 2F,-F. electron
density map from the Sla structure contoured at 1.5c. a, The disulfide bond linking C11 and C99
clamps the N-terminal end of the EC1 B-sandwich. b, The RXGPP loop is buttressed by
interactions of the arginine sidechain with the carbonyl groups of both prolines. Pcdh-15 is

shown in magenta and cdh-23 in cyan.
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Supplementary Figure 8. Pcdh-15+cdh-23 complex formation probed using isothermal titration
calorimetry (ITC) and site-directed mutagenesis. Raw power vs time data are shown for: a, pcdh-
15 (111 pM) titrated with cdh-23 (1.1 mM, same as in Fig. 2a); b, buffer titrated with buffer
(control); ¢, pcdh-15 (111 uM) titrated with buffer (control); d, buffer titrated with cdh-23 (1.1
mM, blank); e, pcdh-15 (120 uM) titrated with cdh-23s47p (1.2 mM); f, pcdh-1504 (110 uM)
titrated with cdh-23 (1.1 mM); g, pcdh-15 (130 uM) titrated with cdh-23, 1456 (1.2 mM); h, pcdh-
15504 (114 puM) titrated with cdh-23 1456 (1.2 mM, same as in Fig. 2a); i, pcdh-15gy136 (110 uM)
titrated with cdh-23 (1.1 mM); j, pcdh-15 (156 puM) titrated with cdh-23pi016 (1.2 mM). All
experiments were performed at 10°C with matched buffers.
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Supplementary Figure 10. Mechanical strength of the pcdh-15+cdh-23 complex probed by
SMD simulations. a, Snapshots of pcdh-15 (purple) and cdh-23 (blue) unbinding during
simulation SN6 (Supplementary Table 3). The protein complex is shown in both cartoon and
surface representations at the beginning of the simulation, and then in surface representation at
indicated time points. Ca®* ions are shown as green spheres. Force was applied to the C-termini of
both protomers. Complete complex separation was achieved after 50 ns. Green arrows point to
broken interfaces; gray boxes are detailed in b-c, showing interacting residues before and after
sliding during unbinding. d, Force applied to one C-terminus versus distance between C-termini
ends of pcdh-15 and cdh-23. Different traces correspond to independent simulations performed at
stretching speeds of 10 (blue and black), 1 (light and dark green), and 0.1 nm/ns (cyan).
Snapshots in (a) are indicated by arrowheads. A 1-ns running average of the cyan curve is shown
in black. At least one clear unbinding force peak was discernable in each simulation.
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Supplementary Figure 11. Molecular correlates of pcdh-15+cdh-23 forced unbinding. a-b,
Force (left scale) applied to one of the protein complex C-termini along with distances between
residues versus time for simulations SN6 and SNA7, respectively. Force is shown in gray, with 1-
ns running average in magenta. Distances (right scale) were monitored throughout SMD
simulations at four locations: the tip of pcdh-15 and the adjacent EC2 repeat of cdh-23 (pcdh-
157106Cp — cdh-23145C, in cyan); the center of the interface (pcdh-15g113C; — cdh-23g77,Cs in dark
green and pcdh-15,Cy — cdh-23y46C; in light green); and the EC1 repeat of cdh-23 and the
adjacent residues in pcdh-15 (pcdh-15gesC: — cdh-23596C, in blue). Right panels show detail
during unbinding, highlighting a sequential separation with detachment of bonds in green
occurring last. ¢, Schematic location of bonds described in (a) and (b) throughout forced
unbinding.
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Supplementary Figure 12. Mechanical strength of two pcdh-15+cdh-23 complexes in parallel.
a, System setup. Two pcdh-15+cdh-23 complexes were placed in parallel but far from each other
in a large water box. The C-termini of the two pcdh-15 protomers were connected to a virtual slab
through independent springs with spring constants equivalent to two EC repeats each. The slab
was in turn connected to an SMD atom moving at constant velocity (all forces were applied in the
stretching direction only). A similar arrangement was set for the C-termini of cdh-23. b, Force
applied to one of the slabs versus distance between slabs. Different traces correspond to
independent simulations performed at stretching speeds of 10 (blue and black), 1 (light and dark
green), and 0.1 nm/ns (cyan). ¢, Maximum force-peak values vs. stretching speed for unbinding
simulations of the pair of complexes shown in magenta (simulations SNA15 to SNA19).
Unbinding force-peak values for simulations of single complexes with (green) and without Ca**
(blue), as well as for C-cadherin (SNC2 to SNC6, orange) are shown for reference.
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Supplementary Figure 13. Removal of bound Ca”* causes complex instability in simulations. a,
RMSD versus time for simulations SAL and SA3 in the NpT ensemble (Supplementary Table 3)
of the cdh-23+pcdh-15 complex in the presence (light green, whole complex; red, pcdh-15; blue,
cdh-23) and the absence of bound Ca®* (dark green, whole complex; magenta, pcdh-15; cyan,
cdh-23). b-c, Snapshots of the pcdh-15+cdh-23 complex at the end of simulations performed with
and without bound Ca?*, respectively. See Supplementary Movies III, IV&V. d, Stability of
individual EC repeats. RMSD per repeat versus time for simulation of the cdh-23+pcdh-15
complex in the absence of bound Ca®* (SA3; cadherin-23 EC1, blue; cadherin-23 EC2, cyan;
protocadherin-15 EC1, violet; protocadherin-15 EC2, magenta). While the complex deformed,
individual repeats retained their fold. e, RMSD versus time for simulations SA2 and SA4 in the
NVT ensemble, shown as in (a).
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Supplementary Figure 14. Interface area and interrepeat arrangement during simulations with
and without bound Ca*". a-b, Surface area of the pcdh-15+cdh-23 interface shown for simulations
performed with (light green) and without bound Ca** (dark green). Simulations SA1 and SA3 in
the NpT ensemble are shown in (a), simulations SA2 and SA4 in the NVT ensemble are shown in
(b). c-d, Conformational freedom of EC2 with respect to EC1 quantified by the projection of the
EC2 principal axis into the x-y plane perpendicular to the EC1 principal axis™. Vector length
relates to the tilt angle (sin 0), while the phase angle corresponds to the azimuthal angle ¢.
Projections are shown for the cdh-23 protomer in the presence (blue) and absence of bound Ca**
(cyan) for simulations SA1 and SA3 (c), as well as simulations SA2 and SA4 (d). Similarly,
projections are shown for the pcdh-15 protomer in the presence (red) and absence of bound Ca**
(violet). Black circles highlight initial projections. Both cdh-23 and pcdh-15 display a dramatic
increase in inter-repeat motion upon Ca”* removal.
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Supplementary Figure 16. Structures of mutant pcdh-15+cdh-23 complexes. a, Two views of a
superposition of the Sla structure (darker colors) and the two mutant complexes involving cdh-
23p1016 (S3, cyan) and cdh-23s47p (S4, ice-blue). The three structures were superimposed on the
cdh-23 EC2 repeat and shown as C, traces, with pcdh-15 in purple and cdh-23 in blue. One CI
and seven Ca’" ions are shown as cyan and green spheres, respectively. Boxes indicate the
approximate position of the details shown in (b-d). b, Detail of the cdh-23p016 linker region, with
a CI" ion bound to Ca®* at binding-site 2'°. c-d, Detail of interactions between EC1 B-strands C
and F for wild-type cdh-23 (S1a) and the cdh-23s47p mutant (S4), respectively. The cyclic side-
chain of P47 prevents the formation of a hydrogen bond with the carbonyl oxygen of E81,
favoring the separation of both strands by an additional water molecule. Protein backbone and
surrounding residues are shown in sticks (cdh-23, cyan; pcdh-15, ice-blue).
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Supplementary Figure 17. Mechanical strength of the pcdh-15+cdh-23 complex probed in the
absence of bound Ca®*. a, Snapshots of pcdh-15 (purple) and cdh-23 (blue) during simulation
SNA11 performed using a stretching speed of 1 nm/ns (Supplementary Table 3). The protein is
shown in cartoon representation at the beginning of the simulation, and then in surface
representation at indicated time points. The second repeat of cdh-23 unfolded before unbinding of
the complex could be observed. b, Snapshots of pcdh-15 and cdh-23 as in (a) during simulation
SNA13 performed using a stretching speed of 0.1 nm/ns. Complete complex separation was
achieved after 70 ns and was preceded by inter-repeat extension (linker unfolding). c, Force
applied to one C-terminus versus distance between C-termini ends of pcdh-15 and cdh-23.
Different traces correspond to independent simulations performed at stretching speeds of 10 (blue
and black), 1 (light and dark green), and 0.1 nm/ns (cyan). Snapshots in (a) and (b) are indicated
by arrowheads pointing down and up, respectively. A 1-ns running average of the cyan curve is
shown in black. Unfolding of an EC repeat preceded unbinding in all simulations except the
slowest one. d, Maximum force-peak values vs. stretching speed for simulations of the pcdh-
15+cdh-23 complex in the absence of bound Ca?* are shown in blue (simulations SNA9 to
SNA13). Unbinding forces for simulations with Ca** (Fig. 3d) are shown in green.
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