55 research outputs found
Some natural zero one laws for ordinals below ε0
We are going to prove that every ordinal α with ε_0 > α ≥ ω^ω satisfies a natural zero one law in the following sense. For α < ε_0 let Nα be the number of occurences of ω in the Cantor normal form of α. (Nα is then the number of edges in the unordered tree which can canonically be associated with α.) We prove that for any α with ω ω ≤ α < ε_0 and any sentence ϕ in the language of linear orders the asymptotic density of ϕ along α is an element of {0,1}. We further show that for any such sentence ϕ the asymptotic density along ε_0 exists although this limit is in general in between 0 and 1. We also investigate corresponding asymptotic densities for ordinals below ω^ω
Phase transitions related to the pigeonhole principle
Since Paris introduced them in the late seventies (Paris1978), densities turned out to be useful for studying independence results. Motivated by their simplicity and surprising strength we investigate the combinatorial complexity of two such densities which are strongly related to the pigeonhole principle. The aim is to miniaturise Ramsey's Theorem for -tuples. The first principle uses an unlimited amount of colours, whereas the second has a fixed number of two colours. We show that these principles give rise to Ackermannian growth. After parameterising these statements with respect to a function f:N->N, we investigate for which functions f Ackermannian growth is still preserved
A Computation of the Maximal Order Type of the Term Ordering on Finite Multisets
We give a sharpening of a recent result of Aschenbrenner and Pong about the maximal order type of the term ordering on the finite multisets over a wpo. Moreover we discuss an approach to compute maximal order types of well-partial orders which are related to tree embeddings
An order-theoretic characterization of the Howard-Bachmann-hierarchy
In this article we provide an intrinsic characterization of the famous Howard-Bachmann ordinal in terms of a natural well-partial-ordering by showing that this ordinal can be realized as a maximal order type of a class of generalized trees with respect to a homeomorphic embeddability relation. We use our calculations to draw some conclusions about some corresponding subsystems of second order arithmetic. All these subsystems deal with versions of light-face Π₁¹-comprehension
Complexity Bounds for Ordinal-Based Termination
`What more than its truth do we know if we have a proof of a theorem in a
given formal system?' We examine Kreisel's question in the particular context
of program termination proofs, with an eye to deriving complexity bounds on
program running times.
Our main tool for this are length function theorems, which provide complexity
bounds on the use of well quasi orders. We illustrate how to prove such
theorems in the simple yet until now untreated case of ordinals. We show how to
apply this new theorem to derive complexity bounds on programs when they are
proven to terminate thanks to a ranking function into some ordinal.Comment: Invited talk at the 8th International Workshop on Reachability
Problems (RP 2014, 22-24 September 2014, Oxford
AGI and the Knight-Darwin Law: why idealized AGI reproduction requires collaboration
Can an AGI create a more intelligent AGI? Under idealized assumptions, for a certain theoretical type of intelligence, our answer is: “Not without outside help”. This is a paper on the mathematical structure of AGI populations when parent AGIs create child AGIs. We argue that such populations satisfy a certain biological law. Motivated by observations of sexual reproduction in seemingly-asexual species, the Knight-Darwin Law states that it is impossible for one organism to asexually produce another, which asexually produces another, and so on forever: that any sequence of organisms (each one a child of the previous) must contain occasional multi-parent organisms, or must terminate. By proving that a certain measure (arguably an intelligence measure) decreases when an idealized parent AGI single-handedly creates a child AGI, we argue that a similar Law holds for AGIs
Homeomorphic Embedding for Online Termination of Symbolic Methods
Well-quasi orders in general, and homeomorphic embedding in particular, have gained popularity to ensure the termination of techniques for program analysis, specialisation, transformation, and verification. In this paper we survey and discuss this use of homeomorphic embedding and clarify the advantages of such an approach over one using well-founded orders. We also discuss various extensions of the homeomorphic embedding relation. We conclude with a study of homeomorphic embedding in the context of metaprogramming, presenting some new (positive and negative) results and open problems
Boundedness Theorems for Flowers and Sharps
Abstract. We show that the Sigma11
- and Sigma12
-boundedness theorems extend to
the category of continuous dilators. We then apply these results to conclude
the corresponding theorems for the category of sharps of real numbers, thus
establishing another connection between Proof Theory and Set Theory, and
extending work of Girard-Normann and Kechris-Woodin
2+1 Flavor QCD simulated in the epsilon-regime in different topological sectors
We generated configurations with the parametrized fixed-point Dirac operator
D_{FP} on a (1.6 fm)^4 box at a lattice spacing a=0.13 fm. We compare the
distributions of the three lowest k=1,2,3 eigenvalues in the nu= 0,1,2
topological sectors with that of the Random Matrix Theory predictions. The
ratios of expectation values of the lowest eigenvalues and the cumulative
eigenvalue distributions are studied for all combinations of k and nu. After
including the finite size correction from one-loop chiral perturbation theory
we obtained for the chiral condensate in the MSbar scheme
Sigma(2GeV)^{1/3}=0.239(11) GeV, where the error is statistical only.Comment: 19 pages, 13 figures, added Sigma in MSba
Ackermann and Goodstein go functorial
We present variants of Goodstein’s theorem that are equivalent to arithmetical comprehension and to arithmetical transfinite recursion, respectively, over a weak base theory. These variants differ from the usual Goodstein theorem in that they (necessarily) entail the existence of complex infinite objects. As part of our proof, we show that the Veblen hierarchy of normal functions on the ordinals is closely related to an extension of the Ackermann function by direct limits
- …
