
Phase transitions related to the pigeonhole
principle

Michiel De Smet? and Andreas Weiermann ??

1 Smidsestraat 192
B 9000 Ghent

Belgium
mds@michieldesmet.eu

2 Department of Mathematics
Ghent University

Building S22
Krijgslaan 281
B 9000 Ghent

Belgium
Andreas.Weiermann@UGent.be

Abstract. Since Jeff Paris introduced them in the late seventies [Par78],
densities turned out to be useful for studying independence results. Moti-
vated by their simplicity and surprising strength we investigate the com-
binatorial complexity of two such densities which are strongly related
to the pigeonhole principle. The aim is to miniaturise Ramsey’s Theo-
rem for 1-tuples. The first principle uses an unlimited amount of colours,
whereas the second has a fixed number of two colours. We show that
these principles give rise to Ackermannian growth. After parameterising
these statements with respect to a function f : N → N, we investigate for
which functions f Ackermannian growth is still preserved.

Keywords Ackermann function, pigeonhole principle, Ramsey theory, phase
transitions.

1 Introduction

The pigeonhole principle is one of the most well-know combinatorial principles,
due to both its simplicity and usefulness. The principle is also known as the
chest-of-drawers principle or Schubfachprinzip and is attributed to Dirichlet in
1834. The pigeonhole principle can also be considered as a finite instance of
Ramsey’s theorem for 1-tuples. So, if RTnk stands for Ramsey’s Theorem for n
dimensions and k colours, i.e.

RTnk ↔ For every G : [N]n → k there exists an infinite set H

such that G � [H]n is constant,
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then the pigeonhole principle is a finite instance of RT1
<∞ = ∀kRT1

k. In this
paper we will investigate miniaturisations of the statements RT1

<∞ and RT1
2. Let

us recall some results from reverse mathematics: for any fixed natural number
k, RCA0 ` RT1

k, whereas WKL0 0 RT1
<∞. Both results are due to Hirst (see

[Hir87], Theorem 6.3 and Theorem 6.5). In addition, there it is also proved
that RT1

<∞ does not imply ACA0 over RCA0. As it does not fit nicely into the
programme of reverse mathematics, one might be tempted to think that RT1

<∞
is of little importance. However, it pops up every now and then in the literature.
It is, for instance, equivalent to Rado’s Lemma over RCA0 (see [Hir87], Theorem
6.6).

For miniaturising RT1
<∞ and RT1

2 we define two notions of density, n-density
and (α, 2)-density, which are parametrised by a function f : N→ N. Using these
notions we define two first order assertions and study their provability with
respect to IΣ1, the first-order part of RCA0.

We show which f give rise to Ackermannian growth and determine the exact
phase transition. In case of n-density Ackermannian growth is obtained for f(i) =

i
1

A
−1
ω (i) , whereas for f(i) = i

1

A
−1
d

(i) it is not. Here Ad denotes the d-th branch of
the Ackermann function Aω. Our proof will show that in these results Aω (Ad)
could be replaced by any non decreasing unbounded non primitive recursive
function (resp. by any non decreasing unbounded primitive recursive function).
In the case of (α, 2)-density we restrict ourselves to only two colours and strength
disappears, as expected. Surprisingly, iterating up to ω2 suffices to gain proof
theoretic strength again. It turns out that f(i) = 1

A−1
d (i)

log(i) gives rise to

no more than primitive recursive growth, but f(i) = 1
A−1

ω (i)
log(i) does. Our

proof will show that also in these results Aω (Ad) could be replaced by any
non decreasing unbounded non primitive recursive function (resp. by any non
decreasing unbounded primitive recursive function).

We would like to mention that the n-density threshold functions are exactly
the same as those for the parameterised Kanamori-McAloon principle, whereas
the (ω2, 2)-density functions equal those for the parameterised Paris-Harrington
principle [KLOW08,WVH2012]. It is our hope that by investigating miniaturi-
sations of RT1

<∞ and RT2
2 one could obtain insights into the seemingly difficult

question whether RT2
2 does or does not prove the totality of the Ackermann

function (the so called Ramsey for pairs problem).

For related work we also we also refer to [DSW08] and the unpublished PhD
thesis of the first author [DS11].

2 n-Density

Henceforth, let f : N → N be any (elementary recursive function), such that
1 ≤ f(x) ≤ x, for x large enough. We define the functions Ff,k and Ff , depending



on f , by

Ff,0(n) := n+ 1

Ff,k+1(n) := Ff,k(. . . (Ff,k︸ ︷︷ ︸
f(n) times

(n)) . . .) := F
f(n)
f,k (n)

Ff (n) := Ff,n(n),

for every k, n ∈ N.
If it is clear which f we are working with, we leave out the subscript f and

simply write Fk and F , instead of Ff,k and Ff , respectively. We also consider
functions f with non integer values. It is then understood that we round a value
f(i) down to bf(i)c, the biggest natural number below f(i). Moreover we assume
that f has always values at least as big as 1. It is easy to verify that the functions
Ff,k and Ff are strictly monotonic increasing if the parameter function f is non
decreasing.

In case of f(i) = i we write Aω for Ff and Ad for Ff,d. Aω is a standard choice
for the well known Ackermann function, which is a recursive but not a primitive
recursive function. The function Ad is called the d-th branch of the Ackermann
function. Every function Ad is primitive recursive. In [OW09] a classification is
given of those functions f for which Ff is primitive or non primitive recursive.

Let us define n-density, the first density notion related to the pigeonhole
principle. In this case the number of colours depends on the minimum of X and
the function f .

Definition 1 X is called 0-dense(f) if |X| ≥ max{f(minX), 3}. X is called
(n+ 1)-dense(f) if for all G : X → f(minX), there exists Y ⊆ X, such that Y
is homogeneous for G and Y is n-dense(f).

Lemma 1 Assume that k ≤ l and that X ⊆ [k, l] and that f, g : [k, l] → N are
two functions such that f(i) ≤ g(i) for all i ∈ [k, l]. If X is n-dense(g) then X
is n-dense(f).

Proof. One verifies the claim easily by induction on n.

2.1 Upper bound

Lemma 2 Let f be non decreasing. Let n ∈ N and X ⊆ N be a finite set. If X
is n-dense(f), then maxX ≥ Ff,n(minX).

Proof. Being of no importance for the proof itself, we leave out the subscript f .
Henceforth, let x0 = minX and c = f(x0). The proof goes by induction on n.

If X is 0-dense(f), then |X| ≥ max{f(x0), 3}. Thus, maxX ≥ x0 + 2 ≥
F0(x0).

Secondly, assume the statement is proven for n and X is (n + 1)-dense(f).
Consider the following partition of X = ∪0≤i<cYi, where Yi is defined by

Yi = {x ∈ X|F in(x0) ≤ x < F i+1
n (x0)}



for 0 ≤ i < c− 1 and Yc−1 = {x ∈ X|F c−1n (x0) ≤ x}. Now, define G : X → c, as
follows

G(x) := i,

for x ∈ Yi. Since X is (n+ 1)-dense(f), there exists a subset Y of X, such that
Y is n-dense(f) and homogeneous for G. By contradiction assume Y ⊆ Yi0 for
some i0 with 0 ≤ i0 < c − 1. The n-density of Y and the monotonicity of Fn
yield

F i0+1
n (x0)− 1 ≥ maxYi0 ≥ maxY ≥ Fn(minY ) ≥
Fn(minYi0) ≥ Fn(F i0n (x0)) = F i0+1

n (x0),

a contradiction. So Y ⊆ Yc−1, which implies

maxX = maxYc−1 ≥ maxY ≥ Fn(minY ) ≥
Fn(minYc−1) ≥ Fn(F c−1n (x0)) = F cn(x0) = F f(x0)

n (x0) = Fn+1(x0),

by the n-density of Y . This concludes the induction argument.

Definition 2 Define PHPf : N→ N by

PHPf (n) := min{n′ ∈ N|[n, n′] is n-dense(f)}.

Let f(i) = i
1

A
−1
ω (i) , where Aω denotes the Ackermann fuction. Then Ff is

Ackermannian, due to Theorem 1 in [OW09]. If f would be non decreasing then
Lemma 2 would yield

PHPf (n) ≥ Ff,n(n) = Ff (n),

for all n ∈ N, hence also PHPf would Ackermannian. Since the provably total
functions of IΣ1 are exactly the primitive recursive functions, we would imme-
diately obtain that PHPf would not be provably recursive in IΣ1. We now show
how to overcome this problem.

Theorem 1 If f(i) = i
1

A
−1
ω (i) , then

IΣ1 0 (∀n)(∀a)(∃b)([a, b] is n-dense(f)).

Proof. Let p(n) := 4 + 3n+1 + (n+ 1)n+1 and let fk(i) := i
1
k . It suffices to show

that PHPf (p(n)) > Aω(n) Assume that PHPf (p(n)) ≤ Aω(n). Then for i ≤
Aω(n) one has that A−1ω (i) ≤ n which yields f(i) ≥ fn(i) for all i ≤ PHPf (p(n)).
The proof of Claim 2.12 from [KLOW08] yields Ffn+1,n+n2+4n+5(p(n) > Aω(n).
Together with Lemma 1 this yields

PHPf (p(n)) ≥ PHPfn(p(n)) ≥ Ffn+1,n+n2+4n+5(p(n)) > Aω(n)

which is a contradiction.



2.2 Lower bound

Let f(i) = i
1

A
−1
d

(i) , where Ad denotes the d-th branch of the Ackermann function
Aω. This function is not weakly increasing on its domain. For i ∈ [Ad(k), Ad(k+
1)− 1] one has that A−1d (i) = k and on such intervals f will be non decreasing.
In intervals of the form i ∈ [Ad(k)−1, Ad(k)] the function A−1d jumps from k−1
to k. But since the intervals of the form [Ad(k), Ad(k + 1) − 1] are rather long
it is very easy to find enough points b such that f(b) ≥ f(i) for all i ≤ b. One
simply has to choose b so large that f majorizes f(c) where c is the initial point
of a last jump interval which comes before b. With this caveat we can consider
f basically as non decreasing function although it in fact is not.

Theorem 2 If f(i) = i
1

A
−1
d

(i) , then

IΣ1 ` (∀n)(∀a)(∃b)([a, b] is n-dense(f)).

Proof. Assume that n and a are given. Put b := 2Ad(a2
n+1)2n+1

. Then f(i) ≤ f(b)

for all i ≤ b. We claim that any Y ⊆ [a, b] with |Y | > 2Ad(a2
n+1)2k is k-dense(f).

To prove the claim we proceed by induction on k.
Assume the claim holds for k − 1 and consider Y ⊆ [a, b] with |Y | >

2Ad(a2
n+1)2k . Since 2Ad(a2

n+1)2n+1

> Ad(2
n+1), we have

f(minY ) < f(b) = (2Ad(a2
n+1)2n+1

)
1

A
−1
d

(2Ad(a2n+1)2n+1
)

≤ (2Ad(a2
n+1)2n+1

)
1

A
−1
d

(Ad(2n+1))

= (2Ad(a2
n+1)2n+1

)
1

2n+1 = 2Ad(a2
n+1) ≤ 2Ad(a2

n+1)2k−1

.

Let c = f(minY ) and G : Y → c be any function. Consider the partition of Y
induced by G, i.e.

Y = ∪0≤i<cYi,

with Yi = {y ∈ Y |G(y) = i}. By contradiction, assume that |Yi| ≤ 2Ad(a2
n+1)2k−1

for every 0 ≤ i < c. Then

2Ad(a2
n+1)2k < |Y | ≤ c · 2Ad(a2

n+1)2k−1

= f(minY ) · 2Ad(a2
n+1)2k−1

< 2Ad(a2
n+1)2k−1

· 2Ad(a2
n+1)2k−1

= 2Ad(a2
n+1)2k−1+Ad(a2

n+1)2k−1

= 2Ad(a2
n+1)2k ,

a contradiction. Thus, there exists an index i0 ∈ {0, . . . , c−1}, such that |Yi0 | >
2Ad(a2

n+1)2k−1

. The induction hypothesis yields that Yi0 is (k− 1)-dense(f) and
by definition Yi0 is homogeneous for G, so Y is k-dense(f).

If k = 0 then |Y | > 2Ad(a2
n+1) > f(minY ), which completes the induction

argument and proves the claim.
Now return to [a, b]. [a, b] is n-dense(f) since |[a, b]| ≥ 2Ad(a2

n+1)2n+1 − a ≥
2Ad(a2

n+1)2n . Remarking that the function E : N×N→ N, defined by E(a, n) =

2Ad(a2
n+1)2n+1

is primitive recursive, completes the proof.

Let PHPf stand for “(∀n)(∀a)(∃b)([a, b] is n-dense(f))”. Then we obtain the
following picture.
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IΣ1 0 PHPf

IΣ1 ` PHPf

f(i) = i

1

A
−1
ω

(i)

threshold region

f(i) = i

1

A
−1
d

(i)

Fig. 1. Phase transition for PHPf .

3 (α, 2)-Density

In this section we work with a fixed number of colours, namely two. For a limit
ordinal not exceeding ω2 we define the fundamental sequence as follows. We put
ω · (k + 1)[n] = ω · k + n and we set ω2[n] = ω · n.

Definition 3 X is called (0, 2)-dense(f) if |X| ≥ max{f(minX), 3}. X is called
(α + 1, 2)-dense(f) if for all G : X → 2 there exists Y ⊆ X, such that Y is
(α, 2)-dense(f) and Y is homogeneous for G. If λ is a limit ordinal, then X is
called (λ, 2)-dense(f) if for all G : X → 2 there exists Y ⊆ X, such that Y is
(λ[minX], 2)-dense(f) and Y is homogeneous for G.

Lemma 3 Let k ≤ l and f, g : [k, l]→ N be non decreasing such that f(i) ≤ g(i)
for all i ∈ [k, l]. If X ⊆ [k, l] is (n, 2)-dense(g) then X is is (n, 2)-dense(g).

3.1 Upper bound

In this section we will use another hierarchy which we call Bf,α and which turns
out to be related to Ff,k. We define Bα, depending on f , by

Bf,0(n) := n+ 1

Bf,α+1(n) := Bf,α(Bf,α(n)) := B2
f,α(n)

Bf,λ(n) := Bf,λ[f(n)](n),

for all n ∈ N and ordinals α and λ, with the latter a limit ordinal. As for Ff ,
we leave out the subscript f and write Bα if it is clear which f we are working
with. We first show a simple lemma concerning the relation between the two
hierarchies defined in this paper. This lemma might be considered as folklore.

Lemma 4 Let k, l and m be natural numbers. Then Bf,ω·k+l(m) = F 2l

2f ,k(m).

Proof. We proceed by main induction on k and subsidiary induction on l.
If k equals l equals zero, we have Bf,0(m) = m+ 1 = F2f ,0(m).



Assume the statement is proven for k−1, we will prove it for k by subsidiary
induction on l.

If l = 0, then the main induction hypothesis yields

Bf,ω·(k−1)(m) = F2f ,k−1(m).

Assume the claim is proven for l − 1. We have

Bf,ω·(k−1)+l(m) = Bf,ω·(k−1)+l−1(Bf,ω·(k−1)+l−1(m))

= F 2l−1

2f ,k−1(F 2l−1

2f ,k−1(m)) = F 2l

2f ,k−1(m),

which proves the statement for k − 1 and every l. Using this fact, we obtain

Bf,ω·k(m) = Bf,ω·(k−1)+ω[f(m)](m)) = Bf,ω·(k−1)+f(m)(m))

= F 2f(m)

2f ,k−1(m) = F2f ,k(m),

which concludes the main induction and proves the statement.

Lemma 5 Let f be non decreasing. Let n be a natural number and α be any
ordinal. If X ⊆ N is (α, 2)-dense(f), then maxX ≥ Bf,α(minX).

Proof. Being of no importance for the proof itself, we leave out the subscript f .
Henceforth, let x0 = minX. The proof goes by transfinite induction on α.

If X is (0, 2)-dense(f), then |X| ≥ max{f(x0), 3}. Thus, maxX ≥ x0 + 2 >
x0 + 1 = B0(x0).

Assume the statement is proven for α and X is (α + 1, 2)-dense(f). Define
G : X → 2 as follows

G(x) :=

{
0 if x0 ≤ x < Bα(x0)

1 if Bα(x0) ≤ x
,

for all x ∈ X. Since X is (α + 1, 2)-dense(f), there exists a subset Y of X,
such that Y is (α, 2)-dense(f) and Y is homogeneous with respect to G. By
contradiction, assume G takes colour 0 on Y . Then, by the induction hypothesis,

Bα(x0)− 1 ≥ maxY ≥ Bα(minY ) = Bα(x0),

a contradiction. So, the colour needs to be 1, which implies

Y ⊆ {x ∈ X|Bα(x0) ≤ x}.

The induction hypothesis yields

maxX ≥ maxY ≥ Bα(minY ) = Bα(Bα(x0)) = Bα+1(x0).

Finally, assume the statement is proven for all α < λ, with λ a limit ordinal, and
X is (λ, 2)-dense(f). There exists a subset Y which is (λ[f(x0)], 2)-dense(f). We
obtain by the induction hypothesis

maxX ≥ maxY ≥ Bλ[f(x0)](minY ) ≥ Bλ[f(x0)](x0) = Bλ(x0).

This completes the proof.



Definition 4 Define PHP2f : N→ N by

PHP2f (n) := min{n′ ∈ N|[n, n′] is (ω2, 2)-dense(f)}.

Fix f(i) = 1
A−1

ω (i)
log(i) for the rest of this subsection.

Lemma 6 Let fn(i) := 1
n ·log2(i). Then PHP2fn(2n

2

) ≥ F2fn (n) holds for every
n ∈ N.

Proof. Let X = [2n
2

,PHP2f (2n
2

)]. Define G : X → 2 by G(x) = 0 for ev-
ery x ∈ X. Since X is (ω2, 2)-dense(fn) there exists Y ⊆ X, such that Y is

(ω2[fn(minX)], 2)-PHP2-dense(fn), i.e. (ω ·fn(2n
2

), 2)-dense(fn). Lemma 4 and
Lemma 5 yield

PHP2(2n
2

) ≥ maxY ≥ Bfn,ω·f(minY )(minY ) ≥ Bfn,ω·f(2n2 )(2
n2

)

= F2fn ,fn(2n
2 )(2

n2

) ≥ F2fn ,n(n) = F2fn (n),

since fn(2n
2

) = n.

Corollary 1 If f(i) = 1
A−1

ω (i)
log(i), then

IΣ1 0 (∀a)(∃b)([a, b] is (ω2, 2)-dense(f)).

Proof. Let p(n) = 4+3n+1+(n+1)n+1 and fk(i) := 1
k log2(i). It suffices to show

that PHP2f (2p(n)
2

) > Aω(n). Assume for a contradiction that PHP2f (2p(n)
2

) ≤
Aω(n). For i ≤ Aω(n) one has A−1ω (i) ≤ n hence f(i) ≥ fn(i) for all i ≤
PHP2f (2p(n)

2

). This yields PHP2f (2p(n)
2

) ≥ PHP2fn(2p(n)
2

) ≥ F2fn (p(n) >
Aω(n). Contradiction!

3.2 Lower bound

As in Section 2.2 let f(i) = 1
A−1

d (i)
log(i), where Ad denotes the dth branch of the

Ackermann function Aω. Recall from Section 2.2 that f is almost non decreasing
and that it is easy to identify the jumps for f .

Theorem 3 If f(i) = 1
A−1

d (i)
log(i), then

IΣ1 ` (∀a)(∃b)([a, b] is (ω2, 2)-dense(f)).

Proof. Assume that a is given. Put b := 2Ad(2
a+2)2a+1

. Then f(i) ≤ f(b) for all

i ≤ b. We claim that any Y ⊆ [a, b], with |Y | > 2Ad(2
a+2)2k is (ω · k, 2)-dense(f).

The proof goes by induction on k.
Let k = 0. Since 2Ad(2

a+2)2a+1

> Ad(2
a+2), we have

f(minY ) < f(b) =
1

A−1d (2Ad(2a+2)2a+1)
log(2Ad(2

a+2)2a+1

)

<
1

2a+2
Ad(2

a+2)2a+1 < Ad(2
a+2),



so, |Y | > 2Ad(2
a+2) > max{f(minY ), 3}, i.e. Y is (0, 2)-dense(f).

Assume the assertion holds for k − 1 and consider Y ⊆ [a, b] with |Y | >
2Ad(2

a+2)2k . We claim that if Z ⊆ Y and |Z| > 2Ad(2
a+2)2k−1+l, then Z is (ω ·

(k − 1) + l, 2)-dense(f). The proof goes by subsidiary induction on l.
If l = 0, then the claim follows by the main induction hypothesis. Assume the

claim holds for l − 1 and |Z| > 2Ad(2
a+2)2k−1+l. Let G : Z → 2 be any function.

Consider the partition of Z induced by G, i.e.

Z = Z0 ∪ Z1,

with Zi = {z ∈ Z|G(z) = i}. By contradiction, assume that

|Zi| ≤ 2Ad(2
a+2)2k−1+l−1,

for i = 0, 1. Then

2Ad(2
a+2)2k−1+l < |Z| ≤ 2 · 2Ad(2

a+2)2k−1+l−1 = 2Ad(2
a+2)2k−1+l,

a contradiction. Thus, there exists an index i0 ∈ {0, 1}, such that |Zi0 | >
2Ad(2

a+2)2k−1+l−1. The induction hypothesis yields Zi0 is (ω · (k − 1) + l− 1, 2)-
dense(f), and so Z is (ω · (k − 1) + l, 2)-dense(f), since Zi0 is homogeneous for
G. This proves the latter claim.

Now return to Y . Let G : Y → 2 be any function. Consider the partition of
Y induced by G, i.e.

Y = Y0 ∪ Y1,
with Yi = {y ∈ Y |G(y) = i}. In the same way as above, one can prove there
exists an index i0 ∈ {0, 1}, such that

|Yi0 | > 2Ad(2
a+2)2k−1 = 2Ad(2

a+2)2k−1+Ad(2
a+2)2k−1−1.

Since
Ad(2

a+2)2k−1 ≥ Ad(2a+2) ≥ f(minY ) + 1,

we have |Yi0 | > 2Ad(2
a+2)2k−1+f(minY ). The latter claim yields Yi0 is (ω · (k −

1) + f(minY ), 2)-dense(f), i.e. (ω ·k[f(minY )], 2)-dense(f). Thus Y is (ω ·k, 2)-
dense(f), since Yi0 is homogeneous for G.

We finally prove that [a, b] is (ω2, 2)-dense(f). Let G : [a, b] → 2 be any
function and consider the partition of [a, b] induced by G, i.e.

[a, b] = Y0 ∪ Y1,

with Yi = {y ∈ [a, b]|G(y) = i}. Remark that |[a, b]| > 2Ad(2
a+2)2a+1 − a ≥

2Ad(2
a+2)2a+1. Similarly as before, there exists an index i0 ∈ {0, 1}, such that

|Yi0 | > 2Ad(2
a+2)2a ≥ 2Ad(2

a+2)2f(a)

.

The main claim yields Y is (ω · f(a), 2)-dense(f), i.e. (ω2[f(a)], 2)-dense(f). In
combination with Yi0 being homogeneous for G, this implies [a, b] is (ω2, 2)-
dense(f).
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IΣ1 0 PHP2f

IΣ1 ` PHP2f

f(i) =
1

A
−1
ω

(i)
log(i)

threshold region

f(i) =
1

A
−1
d

(i)
log(i)

Fig. 2. Phase transition for PHP2f .

Let PHP2f stand for “(∀n)(∀a)(∃b)([a, b] is (ω2, 2)-dense(f))”. Once again, we
obtain the following picture.

In accordance with the referees (for which we are grateful for valuable com-
ments) we expect that it will be not too hard to show that for natural choices
of f the principles PHPlog ◦f and PHP2f are equivalent over IΣ1.
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