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Abstract. Can an AGI create a more intelligent AGI? Under idealized
assumptions, for a certain theoretical type of intelligence, our answer
is: “Not without outside help”. This is a paper on the mathematical
structure of AGI populations when parent AGIs create child AGIs. We
argue that such populations satisfy a certain biological law. Motivated
by observations of sexual reproduction in seemingly-asexual species, the
Knight-Darwin Law states that it is impossible for one organism to asex-
ually produce another, which asexually produces another, and so on for-
ever: that any sequence of organisms (each one a child of the previous)
must contain occasional multi-parent organisms, or must terminate. By
proving that a certain measure (arguably an intelligence measure) de-
creases when an idealized parent AGI single-handedly creates a child
AGI, we argue that a similar Law holds for AGIs.

Keywords: Intelligence Measurement · Knight-Darwin Law · Ordinal
Notations · Intelligence Explosion

1 Introduction

It is difficult to reason about agents with Artificial General Intelligence (AGIs)
programming AGIs1. To get our hands on something solid, we have attempted
to find structures that abstractly capture the core essence of AGIs programming
AGIs. This led us to discover what we call the Intuitive Ordinal Notation System
(presented in Section 2), an ordinal notation system that gets directly at the
heart of AGIs creating AGIs.

1 Our approach to AGI is what Goertzel [11] describes as the Universalist Approach:
we consider “...an idealized case of AGI, similar to assumptions like the frictionless
plane in physics”, with the hope that by understanding this “simplified special case,
we can use the understanding we’ve gained to address more realistic cases.”
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We call an AGI truthful if the things it knows are true2. In [4], we argued
that if a truthful AGI X creates (without external help) a truthful AGI Y in
such a way that X knows the truthfulness of Y , then X must be more intelligent
than Y in a certain formal sense. The argument is based on the key assumption
that if X creates Y , without external help, then X necessarily knows Y ’s source
code.

Iterating the above argument, supposeX1, X2, . . . are truthful AGIs such that
each Xi creates, and knows the truthfulness and the code of, Xi+1. Assuming
the previous paragraph, X1 would be more intelligent than X2, which would be
more intelligent than X3, and so on (in our certain formal sense). In Section 3
we will argue that this implies it is impossible for such a list X1, X2, . . . to go
on forever: it would have to stop after finitely many elements3.

At first glance, the above results might seem to suggest skepticism regarding
the singularity—regarding what Hutter [15] calls intelligence explosion, the idea
of AGIs creating better AGIs, which create even better AGIs, and so on. But
there is a loophole (discussed further in Section 4). Suppose AGIs X and X ′ col-
laborate to create Y . Suppose X does part of the programming work, but keeps
the code secret from X ′, and suppose X ′ does another part of the programming
work, but keeps the code secret from X. Then neither X nor X ′ knows Y ’s full
source code, and yet if X and X ′ trust each other, then both X and X ′ should
be able to trust Y , so the above-mentioned argument breaks down.

Darwin and his contemporaries observed that even seemingly asexual plant
species occasionally reproduce sexually. For example, a plant in which pollen is
ordinarily isolated, might release pollen into the air if a storm damages the part
of the plant that would otherwise shield the pollen4. The Knight-Darwin Law
[8], named after Charles Darwin and Andrew Knight, is the principle (rephrased
in modern language) that there cannot be an infinite sequence X1, X2, . . . of
biological organisms such that each Xi asexually parents Xi+1. In other words,
if X1, X2, . . . is any infinite list of organisms such that each Xi is a biological
parent of Xi+1, then some of the Xi would need to be multi-parent organisms.
The reader will immediately notice a striking parallel between this principle and
the discussion in the previous two paragraphs.

In Section 2 we present the Intuitive Ordinal Notation System.

2 Knowledge and truth are formally treated in [4] but here we aim at a more general
audience. For the purposes of this paper, an AGI can be thought of as knowing a
fact if and only if the AGI would list that fact if commanded to spend eternity listing
all the facts that it knows. We assume such knowledge is closed under deduction, an
assumption which is ubiquitous in modal logic, where it often appears in a form like
K(φ → ψ) → (K(φ) → K(ψ)). Of course, it is only in the idealized context of this
paper that one should assume AGIs satisfy such closure.

3 This may initially seem to contradict some mathematical constructions [18] [22] of
infinite descending chains of theories. But those constructions only work for weaker
languages, making them inapplicable to AGIs which comprehend linguistically strong
second-order predicates.

4 Even prokaryotes can be considered to occasionally have multiple parents, if lateral
gene transfer is taken into account.
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In Section 3 we argue5 that if truthful AGI X creates truthful AGI Y , such
that X knows the code and truthfulness of Y , then, in a certain formal sense, Y
is less intelligent than X.

In Section 4 we adapt the Knight-Darwin Law from biology to AGI and
speculate about what it might mean for AGI.

In Section 5 we address some anticipated objections.
Sections 2–3 are not new (except for new motivation and discussion). Their

content appeared in [4], and was more rigorously formalized there. Sections 4–5
contain this paper’s new material. Of this, some was hinted at in [4], and some
appeared (weaker and less approachably) in the author’s dissertation [2].

2 The Intuitive Ordinal Notation System

If humans can write AGIs, and AGIs are at least as smart as humans, then AGIs
should be capable of writing AGIs. Based on the conviction that an AGI should
be capable of writing AGIs, we would like to come up with a more concrete
structure, easier to reason about, which we can use to better understand AGIs.

To capture the essence of an AGI’s AGI-programming capability, one might
try: “computer program that prints computer programs.” But this only captures
the AGI’s capability to write computer programs, not to write AGIs.

How about: “computer program that prints computer programs that print
computer programs”? This second attempt seems to capture an AGI’s ability to
write program-writing programs, not to write AGIs.

Likewise, “computer program that prints computer programs that print com-
puter programs that print computer programs” captures the ability to write
program-writing-program-writing programs, not AGIs.

We need to short-circuit the above process. We need to come up with a notion
X which is equivalent to “computer program that prints members of X”.

Definition 1 (See the following examples) We define the Intuitive Ordinal No-
tations to be the smallest set P of computer programs such that:

– Each computer program p is in P iff all of p’s outputs are also in P.

Example 2 (Some simple examples)

1. Let P0 be “End”, a program which immediately stops without any outputs.
Vacuously, all of P0’s outputs are in P (there are no such outputs). So P0

is an Intuitive Ordinal Notation.
2. Let P1 be “Print(‘End’)”, a program which outputs “End” and then stops.

By (1), all of P1’s outputs are Intuitive Ordinal Notations, therefore, so is
P1.

3. Let P2 be “Print(‘Print(‘End’)’)”, which outputs “Print(‘End’)” and then
stops. By (2), all of P2’s outputs are Intuitive Ordinal Notations, therefore,
so is P2.

5 This argument appeared in a fully rigorous form in [4], but in this paper we attempt
to make it more approachable.
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Example 3 (A more interesting example) Let Pω be the program:

Let X = ‘End’; While(True) { Print(X); X = “Print(‘” + X + “’)”; }

When executed, Pω outputs “End”, “Print(‘End’)”, “Print(‘Print(‘End’)’)”, and
so on forever. As in Example 2, all of these are Intuitive Ordinal Notations.
Therefore, Pω is an Intuitive Ordinal Notation.

To make Definition 1 fully rigorous, one would need to work in a formal
model of computation; see [4] (Section 3) where we do exactly that. Examples 2
and 3 are reminiscent of Franz’s approach of “head[ing] for general algorithms
at low complexity levels and fill[ing] the task cup from the bottom up” [9]. For
a much larger collection of examples, see [3]. A different type of example will be
sketched in the proof of Theorem 7 below.

Definition 4 For any Intuitive Ordinal Notation x, we define an ordinal |x|
inductively as follows: |x| is the smallest ordinal α such that α > |y| for every
output y of x.

Example 5 – Since P0 (from Example 2) has no outputs, it follows that
|P0| = 0, the smallest ordinal.

– Likewise, |P1| = 1 and |P2| = 2.
– Likewise, Pω (from Example 3) has outputs notating 0, 1, 2, . . .—all the finite

natural numbers. It follows that |Pω| = ω, the smallest infinite ordinal.
– Let Pω+1 be the program “Print(Pω)”, where Pω is as in Example 3. It follows

that |Pω+1| = ω + 1, the next ordinal after ω.

The Intuitive Ordinal Notation System is a more intuitive simplification of
an ordinal notation system known as Kleene’s O.

3 Intuitive Ordinal Intelligence

Whatever an AGI is, an AGI should know certain mathematical facts. The fol-
lowing is a universal notion of an AGI’s intelligence based solely on said facts.
In [4] we argue that this notion captures key components of intelligence such as
pattern recognition, creativity, and the ability or generalize. We will give further
justification in Section 5. Even if the reader refuses to accept this as a genuine
intelligence measure, that is merely a name we have chosen for it: we could give
it any other name without compromising this paper’s structural results.

Definition 6 The Intuitive Ordinal Intelligence of a truthful AGI X is the
smallest ordinal |X| such that |X| > |p| for every Intuitive Ordinal Notation
p such that X knows that p is an Intuitive Ordinal Notation.

The following theorem provides a relationship6 between Intuitive Ordinal
Intelligence and AGI creation of AGI. Here, we give an informal version of the
proof; for a version spelled out in complete formal detail, see [4].

6 Possibly formalizing a relationship implied offhandedly by Chaitin, who suggests
ordinal computation as a mathematical challenge intended to encourage evolution,
“and the larger the ordinal, the fitter the organism” [7].
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Theorem 7 Suppose X is a truthful AGI, and X creates a truthful AGI Y in
such a way that X knows Y ’s code and truthfulness. Then |X| > |Y |.

Proof. Suppose Y were commanded to spend eternity enumerating the biggest
Intuitive Ordinal Notations Y could think of. This would result in some list L
of Intuitive Ordinal Notations enumerated by Y . Since Y is an AGI, L must be
computable. Thus, there is some computer program P whose outputs are exactly
L. Since X knows Y ’s code, and as an AGI, X is capable of reasoning about
code, it follows that X can infer a program P that7 lists L. Having constructed
P this way, X knows: “P outputs L, the list of things Y would output if Y
were commanded to spend eternity trying to enumerate large Intuitive Ordinal
Notations”. Since X knows Y is truthful, X knows that L contains nothing
except Intuitive Ordinal Notations, thus X knows that P ’s outputs are Intuitive
Ordinal Notations, and so X knows that P is an Intuitive Ordinal Notation. So
|X| > |P |. But |P | is the least ordinal > |Q| for all Q output by L, in other
words, |P | = |Y |. ut

Theorem 7 is mainly intended for the situation where parent X creates in-
dependent child Y , but can also be applied in case X self-modifies, viewing the
original X as being replaced by the new self-modified Y (assuming X has prior
knowledge of the code and truthfulness of the modified result).

It would be straightforward to extend Theorem 7 to cases where X creates
Y non-deterministically. Suppose X creates Y using random numbers, such that
X knows Y is one of Y1, Y2, . . . , Yk but X does not know which. If X knows that
Y is truthful, then X must know that each Yi is truthful (otherwise, if some Yi
were not truthful, X could not rule out that Y was that non-truthful Yi). So by
Theorem 7, each |Yi| would be < |X|. Since Y is one of the Yi, we would still
have |Y | < |X|.

4 The Knight-Darwin Law

“...it is a general law of nature that no organic being self-fertilises itself
for a perpetuity of generations; but that a cross with another individ-
ual is occasionally—perhaps at long intervals of time—indispensable.”
(Charles Darwin)

In his Origin of Species, Darwin devotes many pages to the above-quoted
principle, later called the Knight-Darwin Law [8]. In [1] we translate the Knight-
Darwin Law into mathematical language.

7 For example, X could write a general program Sim(c) that simulates an input AGI
c waking up in an empty room and being commanded to spend eternity enumerat-
ing Intuitive Ordinal Notations. This program Sim(c) would then output whatever
outputs AGI c outputs under those circumstances. Having written Sim(c), X could
then obtain P by pasting Y ’s code into Sim (a string operation—not actually run-
ning Sim on Y ’s code). Nowhere in this process do we require X to actually execute
Sim (which might be computationally infeasible).
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Principle 8 (The Knight-Darwin Law) There cannot be an infinite sequence
x1, x2, . . . of organisms such that each xi is the lone biological parent of xi+1. If
each xi is a parent of xi+1, then some xi+1 must have multiple parents.

A key fact about the ordinals is they are well-founded : there is no infinite
sequence o1, o2, . . . of ordinals such that8 each oi > oi+1. In Theorem 7 we
showed that if truthful AGI X creates truthful AGI Y in such a way as to
know the truthfulness and code of Y , then X has a higher Intuitive Ordinal
Intelligence than Y . Combining this with the well-foundedness of the ordinals
yields a theorem extremely similar to the Knight-Darwin Law.

Theorem 9 (The Knight-Darwin Law for AGIs) There cannot be an infinite
sequence X1, X2, . . . of truthful AGIs such that each Xi creates Xi+1 in such
a way as to know Xi+1’s truthfulness and code. If each Xi creates Xi+1 so as
to know Xi+1 is truthful, then occasionally certain Xi+1’s must be co-created
by multiple creators (assuming that creation by a lone creator implies the lone
creator would know Xi+1’s code).

Proof. By Theorem 7, the Intuitive Ordinal Intelligence of X1, X2, . . . would be
an infinite strictly-descending sequence of ordinals, violating the well-foundedness
of the ordinals. ut

It is perfectly consistent with Theorem 7 that Y might operate faster than
X, performing better in realtime environments (as in [10]). It may even be that
Y performs so much faster that it would be infeasible for X to use the knowledge
of Y ’s code to simulate Y . Theorems 7 and 9 are profound because they suggest
that descendants might initially appear more practical (faster, better at problem-
solving, etc.), yet, without outside help, their knowledge must degenerate. This
parallels the hydra game of Kirby and Paris [16], where a hydra seems to grow
as the player cuts off its heads, yet inevitably dies if the player keeps cutting.

If AGI Y has distinct parents X and X ′, neither of which fully knows Y ’s
code, then Theorem 7 does not apply to X,Y or X ′, Y and does not force |Y | <
|X| or |Y | < |X ′|. This does not necessarily mean that |Y | can be arbitrarily
large, though. If X and X ′ were themselves created single-handedly by a lone
parent X0, similar reasoning to Theorem 7 would force |Y | < |X0| (assuming X0

could infer the code and truthfulness of Y from those of X and X ′)9.
In the remainder of this section, we will non-rigorously speculate about three

implications Theorem 9 might have for AGIs and for AGI research.

8 This is essentially true by definition, unfortunately the formal definition of ordinal
numbers is outside the scope of this paper.

9 This suggests possible generalizations of the Knight-Darwin Law such as “There
cannot be an infinite sequence x1, x2, . . . of biological organisms such that each xi is
the lone grandparent of xi+1,” and AGI versions of same. This also raises questions
about the relationship between the set of AGIs initially created by humans and how
intelligent the offspring of those initial AGIs can be. These questions go beyond the
scope of this paper but perhaps they could be a fruitful area for future research.



AGI and the Knight-Darwin Law 7

4.1 Motivation for Multi-agent Approaches to AGI

If AGI ought to be capable of programming AGI, Theorem 9 suggests that a
fundamental aspect of AGI should be the ability to collaborate with other AGIs
in the creation of new AGIs. This seems to suggest there should be no such
thing as a solipsistic AGI10, or at least, solipsistic AGIs would be limited in
their reproduction ability. For, if an AGI were solipsistic, it seems like it would
be difficult for this AGI to collaborate with other AGIs to create child AGIs. To
quote Hernández-Orallo et al: “The appearance of multi-agent systems is a sign
that the future of machine intelligence will not be found in monolithic systems
solving tasks without other agents to compete or collaborate with” [12].

More practically, Theorem 9 might suggest prioritizing research on multi-
agent approaches to AGI, such as [6], [12], [14], [17], [19], [21], and similar work.

4.2 Motivation for AGI Variety

Darwin used the Knight-Darwin Law as a foundation for a broader thesis that
the survival of a species depends on the inter-breeding of many members. By
analogy, if our goal is to create robust AGIs, perhaps we should focus on creating
a wide variety of AGIs, so that those AGIs can co-create more AGIs.

On the other hand, if we want to reduce the danger of AGI getting out
of control, perhaps we should limit AGI variety. At the extreme end of the
spectrum, if humankind were to limit itself to only creating one single AGI11,
then Theorem 9 would constrain the extent to which that AGI could reproduce.

4.3 AGI Genetics

If AGI collaboration is a fundamental requirement for AGI “populations” to
propagate, it might someday be possible to view AGI through a genetic lens.
For example, if AGIs X and X ′ co-create child Y , if X runs operating system
O, and X ′ runs operating system O′, perhaps Y will somehow exhibit traces of
both O and O′.

5 Discussion

In this section, we discuss some anticipated objections.

5.1 What does Definition 6 really have to do with intelligence?

We do not claim that Definition 6 is the “one true measure” of intelligence.
Maybe there is no such thing: maybe intelligence is inherently multi-dimensional.

10 That is, an AGI which believes itself to be the only entity in the universe.
11 Or to perfectly isolate different AGIs away from one another—see [25].
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Definition 6 measures a type of intelligence based on mathematical knowledge12

closed under logical deduction. An AGI could be good at problem-solving but
poor at ordinals. But the broad AGIs we are talking about in this paper should be
capable (if properly instructed) of attempting any reasonable well-defined task,
including that of notating ordinals. So Definition 6 does measure one aspect of
an AGI’s abilities. Perhaps a word like “mathematical-knowledge-level” would
fit better: but that would not change the Knight-Darwin Law implications.

Intelligence has core components like pattern-matching, creativity, and the
ability to generalize. We claim that these components are needed if one wants
to competitively name large ordinals. If p is an Intuitive Ordinal Notation ob-
tained using certain facts and techniques, then any AGI who used those facts
and techniques to construct p should also be able to iterate those same facts
and techniques. Thus, to advance from p to a larger ordinal which not just
any p-knowing AGI could obtain, must require the creative invention of some
new facts or techniques, and this invention requires some amount of creativity,
pattern-matching, etc. This becomes clear if the reader tries to notate ordinals
qualitatively larger than Example 3; see the more extensive examples in [3].

For analogy’s sake, imagine a ladder which different AGIs can climb, and
suppose advancing up the ladder requires exercising intelligence. One way to
measure (or at least estimate) intelligence would be to measure how high an
AGI can climb said ladder.

Not all ladders are equally good. A ladder would be particularly poor if it had
a top rung which many AGIs could reach: for then it would fail to distinguish
between AGIs who could reach that top rung, even if one AGI reaches it with
ease and another with difficulty. Even if the ladder was infinite and had no top
rung, it would still be suboptimal if there were AGIs capable of scaling the whole
ladder (i.e., of ascending however high they like, on demand)13. A good ladder
should have, for each particular AGI, a rung which that AGI cannot reach.

Definition 6 offers a good ladder. The rungs which an AGI manages to reach,
we have argued, require core components of intelligence to reach. And no par-
ticular AGI can scale the whole ladder14, because no AGI can enumerate all

12 Wang has correctly pointed out [23] that an AGI consists of much more than merely
a knowledge-set of mathematical facts. Still, we feel mathematical knowledge is at
least one important aspect of an AGI’s intelligence.

13 Hibbard’s intelligence measure [13] is an infinite ladder which is nevertheless short
enough that many AGIs can scale the whole ladder—the AGIs which do not “have
finite intelligence” in Hibbard’s words (see Hibbard’s Proposition 3). It should be
possible to use a fast-growing hierarchy [24] to transfinitely extend Hibbard’s ladder
and reduce the set of whole-ladder-scalers. This would make Hibbard’s measurement
ordinal-valued (perhaps Hibbard intuited this; his abstract uses the word “ordinal”
in its everyday sense as synonym for “natural number”).

14 Thus, this ladder avoids a common problem that arises when trying to measure
machine intelligence using IQ tests, namely, that for any IQ test, an algorithm can
be designed to dominate that test, despite being otherwise unintelligent [5].
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the Intuitive Ordinal Notations: it can be shown that they are not computably
enumerable15.

5.2 Can’t an AGI just print a copy of itself?

If a truthful AGI knows its own code, then it can certainly print a copy of itself.
But if so, then it necessarily cannot know the truthfulness of that copy, lest it
would know the truthfulness of itself. Versions of Gödel’s incompleteness theo-
rems adapted [20] to mechanical knowing agents imply that a suitably idealized
truthful AGI cannot know its own code and its own truthfulness.

5.3 Prohibitively expensive simulation

The reader might object that Theorem 7 breaks down if Y is prohibitively ex-
pensive for X to simulate. But Theorem 7 and its proof have nothing to do with
simulation. In functional languages like Haskell, functions can be manipulated,
filtered, formally composed with other functions, and so on, without needing to
be executed. Likewise, if X knows the code of Y , then X can manipulate and
reason about that code without executing a single line of it.

6 Conclusion

The Intuitive Ordinal Intelligence of a truthful AGI is defined to be the supre-
mum of the ordinals which have Intuitive Ordinal Notations the AGI knows to
be Intuitive Ordinal Notations. We argued that this notion measures (a type of)
intelligence. We proved that if a truthful AGI single-handedly creates a child
truthful AGI, in such a way as to know the child’s truthfulness and code, then
the parent must have greater Intuitive Ordinal Intelligent than the child. This
allowed us to establish a structural property for AGI populations, resembling
the Knight-Darwin Law from biology. We speculated about implications of this
biology-AGI parallel. We hope by better understanding how AGIs create new
AGIs, we can better understand methods of AGI-creation by humans.
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