137 research outputs found

    Knee kinematics and kinetics in former soccer players with a 16-year-old ACL injury – the effects of twelve weeks of knee-specific training

    Get PDF
    BACKGROUND: Training of neuromuscular control has become increasingly important and plays a major role in rehabilitation of subjects with an injury to the anterior cruciate ligament (ACL). Little is known, however, of the influence of this training on knee stiffness during loading. Increased knee stiffness occurs as a loading strategy of ACL-injured subjects and is associated with increased joint contact forces. Increased or altered joint loads contribute to the development of osteoarthritis. The aim of the study was to determine if knee stiffness, defined by changes in knee kinetics and kinematics of gait, step activity and cross-over hop could be reduced through a knee-specific 12-week training programme. METHODS: A 3-dimensional motion analysis system (VICON) and a force plate (AMTI) were used to calculate knee kinetics and kinematics before and after 12 weeks of knee-specific training in 12 males recruited from a cohort with ACL injury 16 years earlier. Twelve uninjured males matched for age, sex, BMI and activity level served as a reference group. Self-reported patient-relevant data were obtained by the KOOS questionnaire. RESULTS: There were no significant changes in knee stiffness during gait and step activity after training. For the cross-over hop, increased peak knee flexion during landing (from 44 to 48 degrees, p = 0.031) and increased internal knee extensor moment (1.28 to 1.55 Nm/kg, p = 0.017) were seen after training, indicating reduced knee stiffness. The KOOS sport and recreation score improved from 70 to 77 (p = 0.005) and was significantly correlated with the changes in knee flexion during landing for the cross-over hop (r = 0.6, p = 0.039). CONCLUSION: Knee-specific training improved lower extremity kinetics and kinematics, indicating reduced knee stiffness during demanding hop activity. Self-reported sport and recreational function correlated positively with the biomechanical changes supporting a clinical importance of the findings. Further studies are needed to confirm these results in women and in other ACL injured populations

    Knee complaints vary with age and gender in the adult population. Population-based reference data for the Knee injury and Osteoarthritis Outcome Score (KOOS)

    Get PDF
    BACKGROUND: Self-reported knee complaints may vary with age and gender. Reference data from the adult population would help to better interpret the outcome of interventions due to knee complaints. The objectives of the present study were to describe the variation of self-reported knee pain, function and quality of life with age and gender in the adult population and to establish population-based reference data for the Knee injury and Osteoarthritis Outcome Score (KOOS). METHODS: Population-based cohort retrieved from the national population register. The knee-specific Knee injury and Osteoarthritis Outcome Score (KOOS) was mailed to 840 subjects aged 18–84 yrs. RESULTS: 68% response rate. Women in the age group 55–74 reported more knee-related complaints in all the KOOS subscales than age-matched men. The differences were significant for the subscales Pain (p = 0.027), Symptoms (p = 0.003) and ADL function (p = 0.046). In men, worse ADL and Sport and Recreation function was seen in the oldest age group 75–84 years compared to the younger age groups (p < 0.030). In women, worse Pain (p < 0.007), ADL (p < 0.030), Sport and Recreation (p < 0.001) and QOL (p < 0.002) were seen already in the age group 55–74 compared to the younger age groups. CONCLUSION: We found pain and other symptoms, physical function, and knee-related quality of life to vary with age and gender implying the use of age- and gender matched reference values for improved understanding of the outcome after interventions due to knee injury and knee OA

    Six-week high-intensity exercise program for middle-aged patients with knee osteoarthritis: a randomized controlled trial [ISRCTN20244858]

    Get PDF
    BACKGROUND: Studies on exercise in knee osteoarthritis (OA) have focused on elderly subjects. Subjects in this study were middle-aged with symptomatic and definite radiographic knee osteoarthritis. The aim was to test the effects of a short-term, high-intensity exercise program on self-reported pain, function and quality of life. METHODS: Patients aged 36–65, with OA grade III (Kellgren & Lawrence) were recruited. They had been referred for radiographic examination due to knee pain and had no history of major knee injury. They were randomized to a twice weekly supervised one hour exercise intervention for six weeks, or to a non-intervention control group. Exercise was performed at ≥ 60% of maximum heart rate (HR max). The primary outcome measure was the Knee injury and Osteoarthritis Outcome Score (KOOS). Follow-up occurred at 6 weeks and 6 months. RESULTS: Sixty-one subjects (mean age 56 (SD 6), 51 % women, mean BMI 29.5 (SD 4.8)) were randomly assigned to intervention (n = 30) or control group (n = 31). No significant differences in the KOOS subscales assessing pain, other symptoms, or function in daily life or in sport and recreation were seen at any time point between exercisers and controls. In the exercise group, an improvement was seen at 6 weeks in the KOOS subscale quality of life compared to the control group (mean change 4.0 vs. -0.7, p = 0.05). The difference between groups was still persistent at 6 months (p = 0.02). CONCLUSION: A six-week high-intensive exercise program had no effect on pain or function in middle-aged patients with moderate to severe radiographic knee OA. Some effect was seen on quality of life in the exercise group compared to the control group

    Towards a Pharmacophore for Amyloid

    Get PDF
    Diagnosing and treating Alzheimer's and other diseases associated with amyloid fibers remains a great challenge despite intensive research. To aid in this effort, we present atomic structures of fiber-forming segments of proteins involved in Alzheimer's disease in complex with small molecule binders, determined by X-ray microcrystallography. The fiber-like complexes consist of pairs of β-sheets, with small molecules binding between the sheets, roughly parallel to the fiber axis. The structures suggest that apolar molecules drift along the fiber, consistent with the observation of nonspecific binding to a variety of amyloid proteins. In contrast, negatively charged orange-G binds specifically to lysine side chains of adjacent sheets. These structures provide molecular frameworks for the design of diagnostics and drugs for protein aggregation diseases

    Pneumococcal lineages associated with serotype replacement and antibiotic resistance in childhood invasive pneumococcal disease in the post-PCV13 era: an international whole-genome sequencing study

    Get PDF
    Background: Invasive pneumococcal disease remains an important health priority owing to increasing disease incidence caused by pneumococci expressing non-vaccine serotypes. We previously defined 621 Global Pneumococcal Sequence Clusters (GPSCs) by analysing 20 027 pneumococcal isolates collected worldwide and from previously published genomic data. In this study, we aimed to investigate the pneumococcal lineages behind the predominant serotypes, the mechanism of serotype replacement in disease, as well as the major pneumococcal lineages contributing to invasive pneumococcal disease in the post-vaccine era and their antibiotic resistant traits. / Methods: We whole-genome sequenced 3233 invasive pneumococcal disease isolates from laboratory-based surveillance programmes in Hong Kong (n=78), Israel (n=701), Malawi (n=226), South Africa (n=1351), The Gambia (n=203), and the USA (n=674). The genomes represented pneumococci from before and after pneumococcal conjugate vaccine (PCV) introductions and were from children younger than 3 years. We identified predominant serotypes by prevalence and their major contributing lineages in each country, and assessed any serotype replacement by comparing the incidence rate between the pre-PCV and PCV periods for Israel, South Africa, and the USA. We defined the status of a lineage as vaccine-type GPSC (≥50% 13-valent PCV [PCV13] serotypes) or non-vaccine-type GPSC (>50% non-PCV13 serotypes) on the basis of its initial serotype composition detected in the earliest vaccine period to measure their individual contribution toward serotype replacement in each country. Major pneumococcal lineages in the PCV period were identified by pooled incidence rate using a random effects model. / Findings: The five most prevalent serotypes in the PCV13 period varied between countries, with only serotypes 5, 12F, 15B/C, 19A, 33F, and 35B/D common to two or more countries. The five most prevalent serotypes in the PCV13 period varied between countries, with only serotypes 5, 12F, 15B/C, 19A, 33F, and 35B/D common to two or more countries. These serotypes were associated with more than one lineage, except for serotype 5 (GPSC8). Serotype replacement was mainly mediated by expansion of non-vaccine serotypes within vaccine-type GPSCs and, to a lesser extent, by increases in non-vaccine-type GPSCs. A globally spreading lineage, GPSC3, expressing invasive serotypes 8 in South Africa and 33F in the USA and Israel, was the most common lineage causing non-vaccine serotype invasive pneumococcal disease in the PCV13 period. We observed that same prevalent non-vaccine serotypes could be associated with distinctive lineages in different countries, which exhibited dissimilar antibiotic resistance profiles. In non-vaccine serotype isolates, we detected significant increases in the prevalence of resistance to penicillin (52 [21%] of 249 vs 169 [29%] of 575, p=0·0016) and erythromycin (three [1%] of 249 vs 65 [11%] of 575, p=0·0031) in the PCV13 period compared with the pre-PCV period. / Interpretation: Globally spreading lineages expressing invasive serotypes have an important role in serotype replacement, and emerging non-vaccine serotypes associated with different pneumococcal lineages in different countries might be explained by local antibiotic-selective pressures. Continued genomic surveillance of the dynamics of the pneumococcal population with increased geographical representation in the post-vaccine period will generate further knowledge for optimising future vaccine design. / Funding: Bill & Melinda Gates Foundation, Wellcome Sanger Institute, and the US Centers for Disease Control

    Metabolism of halophilic archaea

    Get PDF
    In spite of their common hypersaline environment, halophilic archaea are surprisingly different in their nutritional demands and metabolic pathways. The metabolic diversity of halophilic archaea was investigated at the genomic level through systematic metabolic reconstruction and comparative analysis of four completely sequenced species: Halobacterium salinarum, Haloarcula marismortui, Haloquadratum walsbyi, and the haloalkaliphile Natronomonas pharaonis. The comparative study reveals different sets of enzyme genes amongst halophilic archaea, e.g. in glycerol degradation, pentose metabolism, and folate synthesis. The carefully assessed metabolic data represent a reliable resource for future system biology approaches as it also links to current experimental data on (halo)archaea from the literature

    Reconstruction versus conservative treatment after rupture of the anterior cruciate ligament: cost effectiveness analysis

    Get PDF
    BACKGROUND: The decision whether to treat conservatively or reconstruct surgically a torn anterior cruciate ligament (ACL) is an ongoing subject of debate. The high prevalence and associated public health burden of torn ACL has led to continuous efforts to determine the best therapeutic approach. A critical evaluation of benefits and expenditures of both treatment options as in a cost effectiveness analysis seems well-suited to provide valuable information for treating physicians and healthcare policymakers. METHODS: A literature review identified four of 7410 searched articles providing sufficient outcome probabilities for the two treatment options for modeling. A transformation key based on the expert opinions of 25 orthopedic surgeons was used to derive utilities from available evidence. The cost data for both treatment strategies were based on average figures compiled by Orthopaedic University Hospital Balgrist and reinforced by Swiss national statistics. A decision tree was constructed to derive the cost-effectiveness of each strategy, which was then tested for robustness using Monte Carlo simulation. RESULTS: Decision tree analysis revealed a cost effectiveness of 16,038 USD/0.78 QALY for ACL reconstruction and 15,466 USD/0.66 QALY for conservative treatment, implying an incremental cost effectiveness of 4,890 USD/QALY for ACL reconstruction. Sensitivity analysis of utilities did not change the trend. CONCLUSION: ACL reconstruction for reestablishment of knee stability seems cost effective in the Swiss setting based on currently available evidence. This, however, should be reinforced with randomized controlled trials comparing the two treatment strategies

    Biomechanical considerations in the pathogenesis of osteoarthritis of the knee

    Get PDF
    Osteoarthritis is the most common joint disease and a major cause of disability. The knee is the large joint most affected. While chronological age is the single most important risk factor of osteoarthritis, the pathogenesis of knee osteoarthritis in the young patient is predominantly related to an unfavorable biomechanical environment at the joint. This results in mechanical demand that exceeds the ability of a joint to repair and maintain itself, predisposing the articular cartilage to premature degeneration. This review examines the available basic science, preclinical and clinical evidence regarding several such unfavorable biomechanical conditions about the knee: malalignment, loss of meniscal tissue, cartilage defects and joint instability or laxity

    Functional tissue engineering of ligament healing

    Get PDF
    Ligaments and tendons are dense connective tissues that are important in transmitting forces and facilitate joint articulation in the musculoskeletal system. Their injury frequency is high especially for those that are functional important, like the anterior cruciate ligament (ACL) and medial collateral ligament (MCL) of the knee as well as the glenohumeral ligaments and the rotator cuff tendons of the shoulder. Because the healing responses are different in these ligaments and tendons after injury, the consequences and treatments are tissue- and site-specific. In this review, we will elaborate on the injuries of the knee ligaments as well as using functional tissue engineering (FTE) approaches to improve their healing. Specifically, the ACL of knee has limited capability to heal, and results of non-surgical management of its midsubstance rupture have been poor. Consequently, surgical reconstruction of the ACL is regularly performed to gain knee stability. However, the long-term results are not satisfactory besides the numerous complications accompanied with the surgeries. With the rapid development of FTE, there is a renewed interest in revisiting ACL healing. Approaches such as using growth factors, stem cells and scaffolds have been widely investigated. In this article, the biology of normal and healing ligaments is first reviewed, followed by a discussion on the issues related to the treatment of ACL injuries. Afterwards, current promising FTE methods are presented for the treatment of ligament injuries, including the use of growth factors, gene delivery, and cell therapy with a particular emphasis on the use of ECM bioscaffolds. The challenging areas are listed in the future direction that suggests where collection of energy could be placed in order to restore the injured ligaments and tendons structurally and functionally
    corecore