2,973 research outputs found

    Regioselective catalytic acetoxylation of limonene

    Get PDF
    Two efficient strategies for a direct catalytic and regioselective acetoxylation of terpenes are described. Acetoxylated limonene derivatives were synthesized via palladium-catalyzed C-H activation utilizing para-benzoquinone (BQ) as reoxdidation agent and acetic acid as solvent and reactant. Addition of dimethyl sulfoxide (DMSO) to the catalytic system led to highly selective functionalization of the exocyclic double bond of limonene. This catalytic acetoxylation of limonene was further optimized with regard to a more sustainable and environmentally-friendly procedure. On the other hand{,} the use of an aerobic tandem catalytic system using iron(ii) phthalocyanine (Fe(Pc)) as co-catalyst{,} which acts as electron transfer mediator (ETM){,} enabled a highly selective acetoxylation of the endocyclic double bond of limonene with high conversions. Moreover{,} diacetoxylated products were prepared by a reaction sequence applying the aforementioned catalytic systems

    MHz Unidirectional Rotation of Molecular Rotary Motors

    Get PDF
    A combination of cryogenic UV-vis and CD spectroscopy and transient absorption spectroscopy at ambient temperature is used to study a new class of unidirectional rotary molecular motors. Stabilization of unstable intermediates is achieved below 95 K in propane solution for the structure with the fastest rotation rate, and below this temperature measurements on the rate limiting step in the rotation cycle can be performed to obtain activation parameters. The results are compared to measurements at ambient temperature using transient absorption spectroscopy, which show that behavior of these motors is similar over the full temperature range investigated, thereby allowing a maximum rotation rate of 3 MHz at room temperature under suitable irradiation conditions

    RNAi Screening Uncovers a Synthetic Sick Interaction between CtIP and the BARD1 Tumor Suppressor

    Get PDF
    Human CtIP is best known for its role in DNA end resection to initiate DNA double-strand break repair by homologous recombination. Recently, CtIP has also been shown to protect reversed replication forks from nucleolytic degradation upon DNA replication stress. However, still little is known about the DNA damage response (DDR) networks that preserve genome integrity and sustain cell survival in the context of CtIP insufficiency. Here, to reveal such potential buffering relationships, we screened a DDR siRNA library in CtIP-deficient cells to identify candidate genes that induce synthetic sickness/lethality (SSL). Our analyses unveil a negative genetic interaction between CtIP and BARD1, the heterodimeric binding partner of BRCA1. We found that simultaneous disruption of CtIP and BARD1 triggers enhanced apoptosis due to persistent replication stress-induced DNA lesions giving rise to chromosomal abnormalities. Moreover, we observed that the genetic interaction between CtIP and BARD1 occurs independently of the BRCA1-BARD1 complex formation and might be, therefore, therapeutical relevant for the treatment of BRCA-defective tumors.Peer reviewe

    Calibration and performance of the photon sensor response of FACT -- The First G-APD Cherenkov telescope

    Full text link
    The First G-APD Cherenkov Telescope (FACT) is the first in-operation test of the performance of silicon photo detectors in Cherenkov Astronomy. For more than two years it is operated on La Palma, Canary Islands (Spain), for the purpose of long-term monitoring of astrophysical sources. For this, the performance of the photo detectors is crucial and therefore has been studied in great detail. Special care has been taken for their temperature and voltage dependence implementing a correction method to keep their properties stable. Several measurements have been carried out to monitor the performance. The measurements and their results are shown, demonstrating the stability of the gain below the percent level. The resulting stability of the whole system is discussed, nicely demonstrating that silicon photo detectors are perfectly suited for the usage in Cherenkov telescopes, especially for long-term monitoring purpose

    RNAi Screening Uncovers a Synthetic Sick Interaction between CtIP and the BARD1 Tumor Suppressor

    Get PDF
    Human CtIP is best known for its role in DNA end resection to initiate DNA double-strand break repair by homologous recombination. Recently, CtIP has also been shown to protect reversed replication forks from nucleolytic degradation upon DNA replication stress. However, still little is known about the DNA damage response (DDR) networks that preserve genome integrity and sustain cell survival in the context of CtIP insufficiency. Here, to reveal such potential buffering relationships, we screened a DDR siRNA library in CtIP-deficient cells to identify candidate genes that induce synthetic sickness/lethality (SSL). Our analyses unveil a negative genetic interaction between CtIP and BARD1, the heterodimeric binding partner of BRCA1. We found that simultaneous disruption of CtIP and BARD1 triggers enhanced apoptosis due to persistent replication stress-induced DNA lesions giving rise to chromosomal abnormalities. Moreover, we observed that the genetic interaction between CtIP and BARD1 occurs independently of the BRCA1-BARD1 complex formation and might be, therefore, therapeutical relevant for the treatment of BRCA-defective tumors

    FACT -- Operation of the First G-APD Cherenkov Telescope

    Full text link
    Since more than two years, the First G-APD Cherenkov Telescope (FACT) is operating successfully at the Canary Island of La Palma. Apart from its purpose to serve as a monitoring facility for the brightest TeV blazars, it was built as a major step to establish solid state photon counters as detectors in Cherenkov astronomy. The camera of the First G-APD Cherenkov Telesope comprises 1440 Geiger-mode avalanche photo diodes (G-APD aka. MPPC or SiPM) for photon detection. Since properties as the gain of G-APDs depend on temperature and the applied voltage, a real-time feedback system has been developed and implemented. To correct for the change introduced by temperature, several sensors have been placed close to the photon detectors. Their read out is used to calculate a corresponding voltage offset. In addition to temperature changes, changing current introduces a voltage drop in the supporting resistor network. To correct changes in the voltage drop introduced by varying photon flux from the night-sky background, the current is measured and the voltage drop calculated. To check the stability of the G-APD properties, dark count spectra with high statistics have been taken under different environmental conditions and been evaluated. The maximum data rate delivered by the camera is about 240 MB/s. The recorded data, which can exceed 1 TB in a moonless night, is compressed in real-time with a proprietary loss-less algorithm. The performance is better than gzip by almost a factor of two in compression ratio and speed. In total, two to three CPU cores are needed for data taking. In parallel, a quick-look analysis of the recently recorded data is executed on a second machine. Its result is publicly available within a few minutes after the data were taken. [...]Comment: 19th IEEE Real-Time Conference, Nara, Japan (2014
    • …
    corecore